首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
S JAMAL  A H KARA 《Pramana》2011,77(3):447-460
In this paper a class of multi-dimensional Gordon-type equations are analysed using a multiplier and homotopy approach to construct conservation laws. The main focus is the analysis of the classical versions of the Gordon-type equations and obtaining higher-order variational symmetries and corresponding conserved quantities. The results are extended to the multi-dimensional Gordon-type equations with the two-dimensional Klein–Gordon equation in particular yielding interesting results.  相似文献   

2.
A self-consistent mathematical model that includes equations of elasticity theory and kinetic equations for the density of different types of point defects is reduced to a nonlinear equation of evolution that combines the familiar Korteweg–de Vries–Burgers and Klein–Gordon equations of wave dynamics. Exact analytical solutions for this equation are found and analyzed.  相似文献   

3.
Klein–Gordon equation is one of the basic steps towards relativistic quantum mechanics. In this paper, we have formulated fractional Klein–Gordon equation via Jumarie fractional derivative and found two types of solutions. Zero-mass solution satisfies photon criteria and non-zero mass satisfies general theory of relativity. Further, we have developed rest mass condition which leads us to the concept of hidden wave. Classical Klein–Gordon equation fails to explain a chargeless system as well as a single-particle system. Using the fractional Klein–Gordon equation, we can overcome the problem. The fractional Klein–Gordon equation also leads to the smoothness parameter which is the measurement of the bumpiness of space. Here, by using this smoothness parameter, we have defined and interpreted the various cases.  相似文献   

4.
《Physics letters. A》2006,356(2):124-130
A new auxiliary ordinary differential equation and its solutions are used for constructing exact travelling wave solutions of nonlinear partial differential equations in a unified way. The main idea of this method is to take full advantage of the auxiliary equation which has more new exact solutions. More new exact travelling wave solutions are obtained for the quadratic nonlinear Klein–Gordon equation, the combined KdV and mKdV equation, the sine-Gordon equation and the Whitham–Broer–Kaup equations.  相似文献   

5.
Classical electrodynamics based on the Maxwell–Born–Infeld field equations coupled with a Hamilton–Jacobi law of point charge motion is partially quantized. The Hamilton–Jacobi phase function is supplemented by a dynamical amplitude field on configuration space. Both together combine into a single complex wave function satisfying a relativistic Klein–Gordon equation that is self-consistently coupled to the evolution equations for the point charges and the electromagnetic fields. Radiation-free stationary states exist. The hydrogen spectrum is discussed in some detail. Upper bounds for Born's “aether constant” are obtained. In the limit of small velocities of and negligible radiation from the point charges, the model reduces to Schrödinger's equation with Coulomb Hamiltonian, coupled with the de Broglie–Bohm guiding equation.  相似文献   

6.
F M MAHOMED  REHANA NAZ 《Pramana》2011,77(3):483-491
Folklore suggests that the split Lie-like operators of a complex partial differential equation are symmetries of the split system of real partial differential equations. However, this is not the case generally. We illustrate this by using the complex heat equation, wave equation with dissipation, the nonlinear Burgers equation and nonlinear KdV equations. We split the Lie symmetries of a complex partial differential equation in the real domain and obtain real Lie-like operators. Further, the complex partial differential equation is split into two coupled or uncoupled real partial differential equations which constitute a system of two equations for two real functions of two real variables. The Lie symmetries of this system are constructed by the classical Lie approach. We compare these Lie symmetries with the split Lie-like operators of the given complex partial differential equation for the examples considered. We conclude that the split Lie-like operators of complex partial differential equations are not in general symmetries of the split system of real partial differential equations. We prove a proposition that gives the criteria when the Lie-like operators are symmetries of the split system.  相似文献   

7.
张全举  屈长征 《中国物理》2002,11(3):207-212
We study a third-order nonlinear evolution equation, which can be transformed to the modified KdV equation, using the Lie symmetry method. The Lie point symmetries and the one-dimensional optimal system of the symmetry algebras are determined. Those symmetries are some types of nonlocal symmetries or hidden symmetries of the modified KdV equation. The group-invariant solutions, particularly the travelling wave and spiral wave solutions, are discussed in detail, and a type of spiral wave solution which is smooth in the origin is obtained.  相似文献   

8.
SÜLEYMAN DEMİR 《Pramana》2013,80(5):811-823
The Maxwell–Proca-like field equations of gravitolectromagnetism are formulated using space-time algebra (STA). The gravitational wave equation with massive gravitons and gravitomagnetic monopoles has been derived in terms of this algebra. Using space-time algebra, the most generalized form of gravitoelectromagnetic Klein–Gordon equation has been obtained. Finally, the analogy in formulation between massive gravitational theory and electromagnetism has been discussed.  相似文献   

9.
The nonclassical symmetries of a class of nonlinear partial differential equations obtained by the compatibility method is investigated. We show the nonclassicaJ symmetries obtained in [J. Math. Anal. Appl. 289 (2004) 55, J. Math. Anal. Appl. 311 (2005) 479] are not all the nonclassical symmetries. Based on a new assume on the form of invariant surface condition, all the nonclassical symmetries for a class of nonlinear partial differential equations can be obtained through the compatibility method. The nonlinear Klein-Gordon equation and the Cahn-Hilliard equations all serve as examples showing the compatibility method leads quickly and easily to the determining equations for their all nonclassical symmetries for two equations.  相似文献   

10.
R NARAIN  A H KARA 《Pramana》2011,77(3):555-570
In this paper we discuss symmetries of classes of wave equations that arise as a consequence of some Vaidya metrics. We show how the wave equation is altered by the underlying geometry. In particular, a range of consequences on the form of the wave equation, the symmetries and number of conservation laws, inter alia, are altered by the manifold on which the model wave rests. We find Lie and Noether point symmetries of the corresponding wave equations and give some reductions. Some interesting physical conclusions relating to conservation laws such as energy, linear and angular momenta are also determined. We also present some interesting comparisons with the standard wave equations on a flat geometry. Finally, we pursue the existence of higher-order variational symmetries of equations on nonflat manifolds.  相似文献   

11.
The functional variable method is a powerful solution method for obtaining exact solutions of some nonlinear partial differential equations. In this paper, the functional variable method is used to establish exact solutions of the generalized forms of Klein–Gordon equation, the (2?+?1)-dimensional Camassa–Holm Kadomtsev–Petviashvili equation and the higher-order nonlinear Schrödinger equation. By using this useful method, we found some exact solutions of the above-mentioned equations. The obtained solutions include solitary wave solutions, periodic wave solutions and combined formal solutions. It is shown that the proposed method is effective and general.  相似文献   

12.
The concept of space-time representation is redefined using the octonion space-time (OST) algebra. In this study, describing the properties of octonions and their possible connection with Euclidean space-times, the internal and external space-time events are represented within the OST algebra. Keeping in mind the octonionic dual-Euclidean space-times, we express the homogeneous field equations which leads to the symmetrical nature of internal and external space-times. We derive the generalized Proca–Maxwell equations for massive-dyons in the case of the OST algebra. Accordingly, we have obtained a new set of octonionic Klein–Gordon potential (KGP) and Klein–Gordon field (KGF) equations for massive dyons from the generalized Proca–Maxwell equations. This formalism demonstrates that the octonionic KGP and KGF equations can be expressed in a single equation and it is equivalent to energy-momentum relation for dyons. As such, we have made an attempt to write the conservation of Noetherian current from the octonionic Klein–Gordon equations.  相似文献   

13.
WENJUN LIU  KEWANG CHEN 《Pramana》2013,81(3):377-384
In this paper, we implemented the functional variable method and the modified Riemann–Liouville derivative for the exact solitary wave solutions and periodic wave solutions of the time-fractional Klein–Gordon equation, and the time-fractional Hirota–Satsuma coupled KdV system. This method is extremely simple but effective for handling nonlinear time-fractional differential equations.  相似文献   

14.
In this paper we discuss symmetries of a nonlinear wave equation that arises as a consequence of some Riemannian metrics of signature −2. The objective of this study is to show how geometry can be responsible in giving rise to a nonlinear inhomogeneous wave equation rather than assuming nonlinearities in the wave equation from physical considerations. We find Lie point symmetries of the corresponding wave equations and give their solutions in two cases. Some interesting physical conclusions relating to conservation laws such as energy, linear and angular momenta are also determined.  相似文献   

15.
This paper studies a couple of fractional nonlinear evolution equations using first integral method. These evolution equations are foam drainage equation and Klein–Gordon equation (KGE), the latter of which is considered in (2 + 1) dimensions. For the fractional evolution, the Jumarie’s modified Riemann–Liouville derivative is considered. Exact solutions to these equations are obtained.  相似文献   

16.
In this letter,the Lie point symmetries of the time fractional Fisher(TFF) equation have been derived using a systematic investigation.Using the obtained Lie point symmetries,TFF equation has been transformed into a different nonlinear fractional ordinary differential equations with the Erd′elyi–Kober fractional derivative which depends on the parameter α.After that some invariant solutions of underlying equation are reported.  相似文献   

17.
ABSTRACT

The Klein–Gordon equation plays an important role in mathematical physics. In this paper, a direct method which is very effective, simple, and convenient, is presented for solving the conformable fractional Klein–Gordon equation. Using this analytic method, the exact solutions of this equation are found in terms of the Jacobi elliptic functions. This method is applied to both time and space fractional equations. Some solutions are also illustrated by the graphics.  相似文献   

18.
19.
We consider positive, radial and exponentially decaying steady state solutions of the general reaction–diffusion and Klein–Gordon type equations and present an explicit construction of infinite-dimensional invariant manifolds in the vicinity of these solutions. The result is a precise stable manifold theorem for the reaction–diffusion equation and a precise center-stable manifold theorem for the Klein–Gordon equation, which include the co-dimension of the manifolds and the decay rates for even perturbations.  相似文献   

20.
In this paper, we present a new method to obtain the Lie symmetries and conserved quantities of the discrete wave equation with the Ablowitz-Ladik-Lattice equations. Firstly, the wave equation is transformed into a simple difference equation with the Ablowitz-Ladik-Lattice method. Secondly, according to the invariance of the discrete wave equation and the Ablowitz-Ladik-Lattice equations under infinitesimal transformation of dependent and independent variables, we derive the discrete determining equation and the discrete restricted equations. Thirdly, a series of the discrete analogs of conserved quantities, the discrete analogs of Lie groups, and the characteristic equations are obtained for the wave equation. Finally, we study a model of a biological macromolecule chain of mechanical behaviors, the Lie symmetry theory of discrete wave equation with the Ablowitz-Ladik-Lattice method is verified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号