首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An extracellular exoinulinase was purified from the crude extract of Aspergillus fumigatus by ammonium sulfate precipitation, followed by successive chromatographies on DEAE-Sephacel, Sephacryl S-200, concanavalin A-linked amino-activated silica, and Sepharose 6B columns. The enzyme was purified 25-fold, and the specific activity of the purified enzyme was 171 IU/mg of protein. Gel filtration chromatography revealed a molecular weight of about 200 kDa, and native polyacrylamide gel electrophoresis (PAGE) showed an electrophoretic mobility corresponding to a molecular weight of about 176.5 kDa. Sodium dodecyl sulfate-PAGE analysis revealed three closely moving bands of about 66, 62.7, and 59.4 kDa, thus indicating the heterotrimeric nature of this enzyme. The purified enzyme appeared as a single band on isoelectric focusing, with a pI of about 8.8. The enzyme activity was maximum at pH 5.5 and was stable over a pH range of 4.0–9.5, and the optimum temperature for enzyme activity was 60°C. The purified enzyme retained 35.9 and 25.8% activities after 4 h at 50 and 55°C, respectively. The inulin hydrolysis activity was completely abolished with 1 mM Hg++, whereas EDTA inhibited about 63% activity. As compared to sucrose, stachyose, and raffinose, the purified enzyme had lower K m (0.25 mM) and higher V max (333.3 IU/mg) values for inulin.  相似文献   

2.
A 1,080-bp cDNA (CGMCC 2873) encoding of a cold-active lipase of Aspergillus fumigatus (AFL67) was cloned and expressed in Escherichia coli for the first time. The new lipase, AFL67, was one-step purified by 8.30 folds through Ni?CNTA affinity chromatography with a recovery of 86.8?%. The specific activity of purified AFL67 was 449?U?mg?1 on p-NP hexanoate. AFL67 preferentially hydrolyzed p-nitrophenyl esters of short- and medium-chain fatty acids, with p-nitrophenyl hexanoate the maximum. The optimum temperature and pH was 15?°C and 7.5, respectively. The purified AFL67 was stable at 10?C25?°C for 30?min, and in the pH range of 6.0?C9.0 for 16?h (at 4?°C). Its activity was increased by 47 and 50?%, in the presence of 10?% (v/v) ethanol and isopropanol, respectively. The new lipase AFL67 highly enantioselectively deacylated (S)-??-acetoxyphenylacetic acid (APA) and o-Cl-APA, m-Cl-APA, and p-Cl-APA to (S)-mandelic acid and its derivates. These features render this cold-active novel lipase AFL67 attractive for biotechnological applications in the field of enantioselective synthesis of chiral mandelic acids, o-acylated mandelic acids, and their derivates and detergent additives.  相似文献   

3.
Cellulases can be used for biofuel production to decrease the fuel crises in the world. Microorganisms cultured on lignocellulosic wastes can be used for the production of cellulolytic enzymes at large scale. In the current study, cellulolytic enzyme production potential of Aspergillus fumigatus was explored and optimized by employing various cultural and nutritional parameters. Maximum endoglucanase production was observed after 72 h at 55 °C, pH 5.5, and 70 % moisture level. Addition of 0.3 % of fructose, peptone, and Tween-80 further enhanced the production of endoglucanase. Maximum purification was achieved with 40 % ammonium sulfate, and it was purified 2.63-fold by gel filtration chromatography. Endoglucanase has 55 °C optimum temperature, 4.8 optimum pH, 3.97 mM K m, and 8.53 μM/mL/min V max. Maximum exoglucanase production was observed at 55 °C after 72 h, at pH 5.5, and 70 % moisture level. Further addition of 0.3 % of each of fructose, peptone, and Tween-80 enhances the secretion of endoglucanase. It was purified 3.30-fold in the presence of 40 % ammonium sulfate followed by gel filtration chromatography. Its optimum temperature was 55 °C, optimum pH was 4.8, 4.34 mM K m, and 7.29 μM/mL/min V max. In the case of β-glucosidase, maximum activity was observed after 72 h at 55 °C, pH 5.5, and 70 % moisture level. The presence of 0.3 % of fructose, peptone, and Tween-80 in media has beneficial impact on β-glucosidase production. A 4.36-fold purification was achieved by 40 % ammonium sulfate precipitation and gel filtration chromatography. Optimum temperature of β-glucosidase was 55 °C, optimum pH was 4.8, K m was 4.92 mM, and V max 6.75 μM/mL/min. It was also observed that fructose is better than glucose, and peptone is better than urea for the growth of A. fumigatus. The K m and V max values indicated that endoglucanase, exoglucanase, and β-glucosidase have good affinity for their substrates.  相似文献   

4.
This study evaluated the production of cellulolytic enzymes by an Aspergillus fumigatus strain, isolated from sugar cane bagasse, according to its ability to grow on microcrystalline cellulose as the sole carbon source. The effect of the carbon source (brewer’s spent grain, sugarcane bagasse, and wheat bran) and of the nitrogen source (corn steep liquor and sodium nitrate) on cellulase production was studied using submerged and solid state cultivations at 30 °C. The highest levels of endoglucanase (CMCase) corresponded to 365 U L-1 and was obtained using sugarcane bagasse (1%) and corn steep liquor (1.2%) in submerged fermentation within 6 days of cultivation. This supernatant was used to run a sodium dodecyl sulfate polyacrylamide gel electrophoresis that showed six bands with endoglucanase activity. CMCase activity was higher at 65 °C and pH 2.0, indicating that this microorganism produces a thermophilic and acid endoglucanase. Solid state cultivation favored FPase production, that reached 47 U g-1 of dry substrate (wheat bran and sugarcane bagasse) within 3 days.  相似文献   

5.
A novel lipase gene from Aspergillus fumigatus, afl1-1, was cloned and expressed with a molecular mass of 38 kDa in Escherichia coli for the first time. The recombinant lipase had a preference for short carbon chain p-nitrophenyl esters, especially toward C2 p-nitrophenyl ester and exhibited potent hydrolysis activity that had not been observed. The optimum pH and temperature of this new enzyme were 8.5 and 65 °C, respectively. The recombinant lipase (AFL1-1) is an alkaline enzyme which was stable in the pH range 6.0~8.5 for 16 h (at 4 °C) and at 30~50 °C for 1 h. It is an intracellular enzyme which was purified approximately 8.47-fold with an overall yield of 86.1% by single-step Ni-NTA affinity purification, with a very high specific activity of approximately 1.00?×?10(3) U mg(-1) on a standard substrate of p-nitrophenyl acetate. The Michaelis-Menten kinetic parameters V (max) and K (m) of the lipase were 1.37 mM mg(-1) min(-1) and 14.0 mM, respectively. Ca(2+) and other metal ions could not activate the lipase. According to the homology analysis and site-directed mutagenesis assay, the catalytic triad of the recombinant lipase was identified as Ser-165, Asp-260, and His-290 residues.  相似文献   

6.
Production of l-DOPA, an anti-Parkinson’s drug, using biological sources is widely studied in which tyrosinase is known to play a vital role. Tyrosinase is an omnipresent type 3 copper enzyme participating in many essential biological functions. Understanding properties of tyrosinase is essential for developing useful tyrosinase-based applications. Hence, extracellular tyrosinase from Aspergillus flavus UWFP 570 was purified using ammonium sulphate precipitation and DEAE ion exchange chromatography up to 8.3-fold. Purified protein was a riboprotein in nature containing significant amount of RNA which was confirmed colorimetrically and by electrophoresis. Removal of RNA reduced the activity and altered the conformation of tyrosinase as suggested by spectroflurometric results. Optimum pH and temperature of this 140 kDa protein were 7 and 40 °C, respectively. Copper sulphate and magnesium chloride enhanced the activity whereas in contrast FeCl3 inhibited the activity completely. Purified tyrosinase transformed l-tyrosine (5 mM) to l-DOPA within 5 h.  相似文献   

7.
Two thermostable glucoamylases were produced from Aspergillus niger B-30 by submerged fermentation. The two glucoamylases GAM-1 and GAM-2 were purified by ammonium sulfate precipitation, diethylaminoethylcellulose fast flow(DEAE FF) and Superdex G-75 gel filtration columns. The molecular weights of GAM-1 and GAM-2 were determined as 9.72×104 and 7.83×104 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), while the molecular weights of GAM-1 and GAM-2 were determined to be 8.05×104 and 7.04×104 by matrix assisted laser desorption ionizationtime-of-flight(MALDI-TOF) mass spectrometry, respectively. Both the enzymes were glycosylated, with 10.4% and 11.4% carbohydrate content, respectively. The optimal pH and temperature were 4.0―4.6 and 70 ℃ for both. The two glucoamylases were maintained 100% relative activity after incubation at 60 ℃ for 120 min. After the hydrolysis of starch for 120 min, glucose was the only product, confirming that the two enzymes were of high efficiency towards starch. The GAM-2 exhibited higher catalytic activity towards oligosaccharides such as maltose than GAM-1, and the kinetic analysis shows that the affinity of GAM-2 to starch was lower than that of GAM-1. The high thermostability and effectiveness make the two glucoamylases potentially attractive for biotechnological application.  相似文献   

8.
Conidia are responsible for reproduction, dispersal, environmental persistence and host infection of many fungal species. One of the main environmental factors that can kill and/or damage conidia is solar UV radiation. Cyclobutane pyrimidine dimers (CPD) are the major DNA photoproducts induced by UVB. We examined the conidial germination kinetics and the occurrence of CPD in DNA of conidia exposed to different doses of UVB radiation. Conidia of Aspergillus fumigatus, Aspergillus nidulans and Metarhizium acridum were exposed to UVB doses of 0.9, 1.8, 3.6 and 5.4 kJ m−2. CPD were quantified using T4 endonuclease V and alkaline agarose gel electrophoresis. Most of the doses were sublethal for all three species. Exposures to UVB delayed conidial germination and the delays were directly related both to UVB doses and CPD frequencies. The frequencies of dimers also were linear and directly proportional to the UVB doses, but the CPD yields differed among species. We also evaluated the impact of conidial pigmentation on germination and CPD induction on Metarhizium robertsii. The frequency of dimers in an albino mutant was approximately 10 times higher than of its green wild-type parent strain after exposure to a sublethal dose (1.8 kJ m−2) of UVB radiation.  相似文献   

9.
Four previously undescribed isochromanes were isolated from the fermentation broth of an endophytic fungus Aspergillus fumigatus, which was obtained from the fruiting body of Cordyceps sinensis. Their structures were elucidated through extensive spectroscopic analyses. One racemic isochromane was further purified by chiral HPLC to yield a pair of enantiomers and their absolute configurations were determined by quantum chemical ECD calculations. These isolated compounds were evaluated for cytotoxicity against two cell lines (MV4-11 and MDA-ME-231) and the result showed that compounds 1a and 2 exhibited moderate growth inhibition against MV4-11 cell line.  相似文献   

10.
A novel angiogenesis inhibitor, 5-demethoxyfumagillol (1), was obtained by isolation, purification and saponification of cultured broth of Aspergillus fumigatus. The structure was assigned as (3R,4R,6R)-4-[(2R,3R)-2-methyl-3-(3-methyl-but-2-enyl)-oxiranyl]-1-oxa-spiro[2,5]octan-6-ol (1) by spectroscopic analysis and confirmed by independent synthesis from fumagillol (3). In addition, 6-O-(chloroacetylcarbamoyl)-5-demethoxyfumagillol (7) showed a potential anti-angiogenic activity in CAPE cells in vitro.  相似文献   

11.
Inulinases are enzymes involved in the hydrolysis of inulin, which can be used in the food industry to produce high-fructose syrups and fructo-oligosaccharides. For this purpose, different Aspergillus strains and substrates were tested for inulinase production by solid-state fermentation, among which Aspergillus terreus URM4658 grown on wheat bran showed the highest activity (15.08 U mL−1). The inulinase produced by this strain exhibited optimum activity at 60 °C and pH 4.0. A detailed kinetic/thermodynamic study was performed on the inulin hydrolysis reaction and enzyme thermal inactivation. Inulinase was shown to have a high affinity for substrate evidenced by very-low Michaelis constant values (0.78–2.02 mM), which together with a low activation energy (19.59 kJ mol−1), indicates good enzyme catalytic potential. Moreover, its long half-life (t1/2 = 519.86 min) and very high D-value (1726.94 min) at 60 °C suggested great thermostability, which was confirmed by the thermodynamic parameters of its thermal denaturation, namely the activation energy of thermal denaturation (E*d = 182.18 kJ mol−1) and Gibbs free energy (106.18 ≤ ΔG*d ≤ 111.56 kJ mol−1). These results indicate that A. terreus URM4658 inulinase is a promising and efficient biocatalyst, which could be fruitfully exploited in long-term industrial applications.  相似文献   

12.
Applied Biochemistry and Biotechnology - (R)-[3,5-bis(trifluoromethyl) phenyl] ethanol [(R)-3,5-BTPE] is a crucial chiral intermediate for the synthesis of the NK-1 receptor antagonists aprepitant,...  相似文献   

13.
Cellulase is an enzyme that converts the polymer structure of polysaccharides into fermentable sugars. The high market demand for this enzyme together with the variety of applications in the industry has brought the research on cellulase into focus. In this study, crude cellulase was produced from oil palm empty fruit bunch (OPEFB) pretreated with 2 % NaOH with autoclave, which was composed of 59.7 % cellulose, 21.6 % hemicellulose, and 12.3 % lignin using Trichoderma asperellum UPM1 and Aspergillus fumigatus UPM2. Approximately 0.8 U/ml of FPase, 24.7 U/ml of CMCase and 5.0 U/ml of β-glucosidase were produced by T. asperellum UPM1 at a temperature of 35 °C and at an initial pH of 7.0. A 1.7 U/ml of FPase, 24.2 U/ml of CMCase, and 1.1 U/ml of β-glucosidase were produced by A. fumigatus UPM2 at a temperature of 45 °C and at initial pH of 6.0. The crude cellulase was best produced at 1 % of substrate concentration for both T. asperellum UPM1 and A. fumigatus UPM2. The hydrolysis percentage of pretreated OPEFB using 5 % of crude cellulase concentration from T. asperellum UPM1 and A. fumigatus UPM2 were 3.33 % and 19.11 %, with the reducing sugars concentration of 1.47 and 8.63 g/l, respectively.  相似文献   

14.
Exoglucanase production by brown rot fungus Fomitopsis sp. RCK2010 was optimized under solid-state fermentation using Plackett–Burman design (PBD) and response surface methodology (RSM). Four fermentation variables (moisture, inoculum level, casein, and Triton X-100) were identified to effect cellulase production significantly by PBD, which were further optimized using RSM of central composite design. An overall 130 % increase in enzyme production was achieved by the optimization of variables using statistical approaches. Moreover, crude cellulase from Fomitopsis sp. RCK2010 was applied to saccharify pretreated Prosopis juliflora (cellulosic fraction), which resulted in the release of 327.35 mg/g of reducing sugars that could further be utilized for bioethanol production.  相似文献   

15.
Three hen egg-white lysozyme inhibitor producing strains, Enterobacter cloacae M-1002, E. sakazakii M-1204, and Erwinia rhapontici H-55, were isolated from the soils of Taiwan. E. cloacae M-1002 appeared to be a promising inhibitor producing strain. One inhibitor was isolated from the culture broth of this strain. Maximum lysozyme inhibitory activity was obtained when the bacterium was grown aerobically in a medium consisting of 0.75% glucose, 0.25% beef extract, 1.0% polypeptone, and 0.25% sodium L-glutamate (pH 70) at 37 °C after 36–48 hrs. A hen egg-white lysozyme inhibitor was isolated from the culture broth of this strain. The inhibitor was purified from the culture supernatant of E. cloacae M-1002 by ammonium sulfate fractionation, DEAE-Sepharose CL-6B column chromatography and Fractogel TSK HW-55 (S) gel chromatography. Molecular weight of the purified lysozyme inhibitor was estimated to be 18, 000–20, 000 by SDS-PAGE and HPLC, and was composed of 71% amino acid and 23% total sugar. Serine, glycine, and alanine in a 3:2:1 molar ratio were the major amino acids, calculated to be 32.8, 20.3, and 11.4% (mol%), respectively. Glucose and mannose were the major sugar components of the inhibitor. The inhibitor was stable at pH 5 to 8 and was stable under 50 °C. Only hen egg-white lysozyme was inhibited by the purified inhibitor but not the other tested enzymes such as lysozyme of celery, turnip; lytic enzyme of Pseudomonas aeruginosa M-1001; chitinase/lysozyme of P. aeruginosa K-187; or cellulase and xylanase of Streptomyces actuosus A-151 and Aspergillus sp. G-393. The inhibition of lysozyme to the bacterial cell lytic activity by the purified inhibitor was 100%.  相似文献   

16.
Production of the fibrinolytic enzyme was carried out using 2.5-L glass fermentor, culture of thermophilic Streptomyces sp., and glucose yeast extract peptone medium of pH 8.0. Five successive batches were carried out under controlled fermentation conditions viz., agitation 140 rpm, aeration 0.5 vvm, 55 °C, and 18 h. The total protein extracellularly produced in the cell-free broth was ~300-500 mg/L. The enzyme belongs to serine endopeptidase type. Studies on the fibrin degradation indicate that the enzyme degrades the fibrin into small molecular weight products as seen from HPLC profile. Phase-contrast microscopic structure of fibrin showed that enzyme cleaves the fibrin filaments. The ex vivo activity of the actinokinase was compared with 500 IU of urokinase and 350 IU of streptokinase. The ex vivo clot lysis was found to be faster as compared to the commercial available enzymes.  相似文献   

17.
Based on the active site of Aspergillus fumigatus lanosterol 14a-demethylase(AF-CYP51),novel triazole compounds weredesigned.Their chemical synthesis and the antifungal activities were reported.The results showed that all the target compoundsexhibited excellent activities with broad spectrum;in which compounds 4,12 and 15 showed comparable activities against A.fumigatus to the control drug itraconazole.  相似文献   

18.
19.
Recently, five indole prenyltransferases from Aspergillus fumigatus have been proven biochemically to be responsible for prenylations of diverse substrates. In this study, we show peptidase activities of 7-DMATS, FgaPT1, CdpNPT, and FtmPT1, with preference for linear peptides containing a tryptophanyl moiety at the N terminus. Testing of 31 peptides revealed that these enzymes shared similar substrate specificity and accepted H-L-Trp-L-Ala-OH and H-L-Trp-Gly-OH as best substrates for aminopeptidase activity. By using H-L-Trp-Gly-OH as substrate, Km values at 350, 380, 300, and 420 microM and enzymatic rate constants kcat/Km at 0.51, 0.24, 0.53, and 0.14 mM(-1)s(-1) were determined for 7-DMATS, FgaPT1, CdpNPT, and FtmPT1, respectively. In contrast to prenyltransferase activities, the aminopeptidase activities were strongly or completely inhibited by EDTA. Mn2+ increased the aminopeptidase activities of FtmPT1 and CdpNPT up to 4- and 6-fold, respectively. To the best of our knowledge, this is the first report on the catalytic promiscuity of prenyltransferases.  相似文献   

20.
Development of reliable and eco-friendly process for synthesis of metallic nanoparticles is an important step in the filed of application of nanotechnology. One of the options to achieve this objective is to use natural processes such as use of biological systems. In this work we have investigated extracellular biosynthesis of silver nanoparticles using Aspergillus fumigatus. The synthesis process was quite fast and silver nanoparticles were formed within minutes of silver ion coming in contact with the cell filtrate. UV–visible spectrum of the aqueous medium containing silver ion showed a peak at 420 nm corresponding to the plasmon absorbance of silver nanoparticles. Transmission electron microscopy (TEM) micrograph showed formation of well-dispersed silver nanoparticles in the range of 5–25 nm. X-ray diffraction (XRD)-spectrum of the silver nanoparticles exhibited 2θ values corresponding to the silver nanocrystal. The process of reduction being extracellular and fast may lead to the development of an easy bioprocess for synthesis of silver nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号