首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study describes the characterization and optimization of medium components for an extracellular detergent, surfactant, organic solvent and thermostable serine alkaline protease produced by alkaliphilic Bacillus pumilus MCAS8 strain isolated from Pulicat lake sediments, Tamil Nadu, India. The strain yielded maximum protease (2,214?U/ml) under optimized conditions: carbon source, citric acid??1.5?% (w/w); inducer, soyabean meal??2?% (w/w); pH?11.0; shaking condition 37?°C for 48?h. The enzyme had pH and temperature optima of 9.0 and 60?°C, respectively. The enzyme displayed the molecular mass of 36?kDa in sodium dodecyl sulphate?Cpolyacrylamide gel electrophoresis study and exhibited activity at a wide range of pH (6.0?C11.0) and thermostability (20?C70?°C). More than 70?% residual activity was observed when the enzyme was incubated with dithiothreitol, ethylenediaminetetraacetic acid, ethylene glycol tetraacetic acid and H2O2 for 30?min. The protease activity was also enhanced by divalent cations such as Ba2+, Ca2+ and Mg2+ and was strongly inhibited by Fe2+, Zn2+, Sr2+, Hg2+ and urea. The enzyme retained more than 50?% of its initial activity after pre-incubation for 1?h in the presence of 5?% (v/v) organic solvents such as dimethyl sulphoxide and acetone. The protease could hydrolyse various native proteinaceous substrates (1?%?w/v) such as bovine serum albumin, casein, skim milk, gelatine, azocasein and haemoglobin. Wash performance analysis of enzyme revealed that it could effectively remove blood stains from the cotton fabric, thus making it suitable to use as an effective detergent additive. The protease enzyme also exhibited promising result in the dehairing of goat skin. The potency of the eco-friendly enzyme without using any chemicals against washing and dehairing showed that the enzyme could be used for various industrial applications.  相似文献   

2.
An extracellular alkalophilic lipase was partially purified from heterotrophic Shewanella algae (KX 272637) associated with marine macroalgae Padina gymnospora. The enzyme possessed a molecular mass of 20 kD, and was purified 60-fold with a specific activity of 36.33 U/mg. The enzyme exhibited Vmax and Km of 1000 mM/mg/min and 157 mM, respectively, with an optimum activity at 55 °C and pH 10.0. The catalytic activity of the enzyme was improved by Ca2+ and Mg2+ ions, and the enzyme showed a good tolerance towards organic solvents, such as methanol, isopropanol, and ethanol. The purified lipase hydrolyzed the refined liver oil from leafscale gulper shark Centrophorus squamosus, yielding a total C20-22 n-3 PUFA concentration of 34.99% with EPA + DHA accounting the major share (34% TFA), after 3 h of hydrolysis. This study recognized the industrial applicability of the thermostable and alkalophilic lipase from marine macroalga-associated bacterium Shewanella algae to produce enriched C20-22 n-3 polyunsaturated fatty acid concentrate.  相似文献   

3.
A new organic solvent-tolerant strain Bacillus megaterium AU02 which secretes an organic solvent-tolerant protease was isolated from milk industry waste. Statistical methods were employed to achieve optimum protease production of 43.6 U/ml in shake flask cultures. The productivity of the protease was increased to 53 U/ml when cultivated under controlled conditions in a 7-L fermentor. The protease was purified to homogeneity by a three-step process with 24 % yield and specific activity of 5,375 U/mg. The molecular mass of the protease was found to be 59 kDa. The enzyme was active over a wide range of pH (6.0–9.0), with an optimum activity at pH 7.0 and temperature from 40 to 70 °C having an optimum activity at 50 °C. The thermal stability of the enzyme increased significantly in the presence of CaCl2, and it retained 90 % activity at 50 °C for 3 h. The K m and V max values were determined as 0.722 mg/ml and 0.018 U/mg respectively. The metalloprotease exhibited significant stability in the presence of organic solvents with log P values more than 2.5, nonionic detergents and oxidising agent. An attempt was made to test the synthesis of aspartame precursor (Cbz-Asp-Phe-NH2) which was catalysed by AU02 protease in the presence of 50 % DMSO. These properties of AU02 protease make it an ideal choice for enzymatic peptide synthesis in organic media.  相似文献   

4.
Acinetobacter strain PS12B was isolated from marine sediment and was found to be a good candidate to degrade agar and produce agarase enzyme. The extracellular agarase enzyme from strain PS12B was purified by ammonium sulfate precipitation followed by DEAE-cellulose ion-exchange chromatography. The specific activity of the crude enzyme which was 1.52 U increased to 45.76 U, after two-stage purification, with an enzyme yield of 9.76%. Purified enzyme had a molecular mass of 24 kDa. The optimum pH and temperature for activity of purified agarase were found to be 8.0 and 40 °C, respectively. The Km and Vmax values for agarase were 4.69 mg/ml and 0.5 μmol/min, respectively. Treatment with EDTA reduced the agarase activity by 58% at 5 mM concentration. The enzyme activity was stimulated by the presence of Fe2+, Mn2+, and Ca2+ ions while reducing reagents (β-mercaptoethanol and dithiothreitol, DTT) enhanced its activity by 30–40%. The purified agarase exhibited tolerance to both detergents and organic solvents. Major hydrolysis products of agar were DP4 and also a mixture of longer oligosaccharides DP6 and DP7. The enzyme hydrolysed seaweed (Gracilaria verrucosa) exhibited strong antioxidant activity in vitro. Successful hydrolysis of seaweed indicates the potential use of the enzyme to produce seaweed hydrolysate having health benefits as well as the industrial application like the production of biofuels.  相似文献   

5.
The present study deals with the characterization of halotolerant protease produced by Bacillus aquimaris VITP4 strain isolated from Kumta coast, Karnataka, India. The studies were performed at 40 °C and pH 8 in Tris buffer. Metal ions such as Mn2+ and Ca2+ increased the proteolytic activity of the enzyme by 34 and 30 %, respectively, at 10 mM concentration. Cu2+ at 1 mM concentration was found to enhance the enzyme activity by 16 %, whereas inhibition was observed at higher concentration (>5 mM). Slight inhibition was observed even with lower (>1 mM) concentrations of Zn2+, Hg2+, Fe3+, Ni2+, and Co2+.The activity of protease was completely inhibited by phenylmethylsulfonyl fluoride, indicating that the VITP4 protease is a serine protease. The presence of ethylenediaminetetraacetic acid and 1,10-phenanthroline (>5 mM) moderately inhibited the activity, suggesting that the enzyme is activated by metal ions. The protease was purified to homogeneity with a purification fold of 15.7 with ammonium sulfate precipitation and 46.65 with gel filtration chromatography using Sephadex G-100, resulting in a specific activity of 424?±?2.6 U mg?1. The VITP4 protease consists of a single polypeptide chain with a molecular mass of 34.7 kDa as determined by sodium dodecyl sulfate–polyacrylamide gel electrophoresis and matrix-assisted laser desorption/ionization–time of flight. Among the different substrates used (casein, egg albumin, gelatin, and bovine serum albumin), the activity was higher with casein with V max, K m, and k cat values of 0.817 mg ml min?1, 0.472 mg ml?1, and 2.31 s?1, respectively. Circular dichroism studies revealed that the VITP4 protease has a predominantly β-sheet structure (51.6 %) with a temperature for half denaturation of 85.8 °C in the presence of 1 mM CaCl2. Additionally, the VITP4 protease was found to retain more than 70 % activity in the presence of 10 mM concentration of different detergents (CTAB, urea, and sodium dodecyl sulfate) and surfactants (Triton X-100, Tween-20, and Tween-80), and the results of wash performance test with various commercial detergents confirmed that it can be used in detergent formulations.  相似文献   

6.
A protease from newly isolated Bacillus circulans M34 was purified by Q‐Sepharose anion exchange chromatography and Sepharose–bacitracin affinity chromatography followed by (NH4)2SO4 precipitation. The molecular mass of the purified enzyme was determined using SDS–PAGE. The optimum pH and temperature for protease activity were 11 and 50°C, respectively. The effect of various metal ions on protease activity was investigated. Alkaline protease from Bacillus circulans M34 wase activated by Zn2+, Cu2+ and Co2+ up to 31%. The purified protease was found to be stable in the organic solvents, surfactants and oxidizing agent. The substrate specificity of purified protease was investigated towards different substrates. The protease was almost completely inhibited by the serine protease inhibitor phenylmethanesulfonyl fluoride. The kinetic parameters of the purified protease, maximum rate (Vmax) and Michaelis constant (Km), were determined using a Lineweaver–Burk plot. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Penicillium nalgiovense PNA9 produces an extracellular protease during fermentation with characteristics of growth-associated product. Enzyme purification involved ammonium sulfate precipitation, dialysis, and ultrafiltration, resulting in 12.1-fold increase of specific activity (19.5 U/mg). The protein was isolated through a series of BN-PAGE and native PAGE runs. ESI-MS analysis confirmed the molecular mass of 45.2 kDa. N-Terminal sequencing (MGFLKLLKGSLATLAVVNAGKLLTANDGDE) revealed 93 % similarity to a Penicillium chrysogenum protease, identified as major allergen. The protease exhibits simple Michaelis-Menten kinetics and K m (1.152 mg/ml), V max (0.827 mg/ml/min), and k cat (3.2?×?102) (1/s) values against azocasein show that it possesses high substrate affinity and catalytic efficiency. The protease is active within 10–45 °C, pH 4.0–10.0, and 0–3 M NaCl, while maximum activity was observed at 35 °C, pH 8.0, and 0.25 M NaCl. It is active against the muscle proteins actin and myosin and inactive against myoglobin. It is highly stable in the presence of non-ionic surfactants, hydrogen peroxide, BTNB, and EDTA. Activity was inhibited by SDS, Mn2+ and Zn2+, and by the serine protease inhibitor PMSF, indicating the serine protease nature of the enzyme. These properties make the novel protease a suitable candidate enzyme in meat ripening and other biotechnological applications.  相似文献   

8.
A strain that exhibited intracellular proline-specific aminopeptidase (PAP) activity was isolated from soy sauce koji and identified as Aspergillus oryzae JN-412. The gene coding PAP was cloned and efficiently expressed in Escherichia coli BL21 in a biologically active form. The highest specific activity reached 52.28 U mg?1 at optimum cultivation conditions. The recombinant enzyme was purified 3.3-fold to homogeneity with a recovery of 36.7 % from cell-free extract using Ni-affinity column chromatography. It appeared as a single protein band on SDS-PAGE with molecular mass of approximately 50 kDa. The purified enzyme exhibited the highest activity at 60 °C and pH 7.5. The enzyme activity was inhibited by PMSF and ions like Zn2+ and Cu2+. DTT, β-mercaptoethanol, EDTA, and ions like Co2+, Mg2+, Mn2+, and Ca2+ had no influence on enzyme activity, whereas Ni2+ enhanced the enzyme activity. By using collagen as a substrate, the purified recombinant prolyl aminopeptidase contributed to the hydrolysis of collagen when used in combination with neutral protease, and free amino acids in collagen hydrolysates was significantly increased.  相似文献   

9.
A halotolerant Virgibacillus alimentarius LBU20907 isolated from fermented fish (Budu) was found to be an efficient producer of extracellular halophilic lipase enzyme. The enzyme was purified 5.99-fold with a 0.15% final yield to homogeneity by ammonium sulfate precipitation, followed by dialysis, Toyopearl DEAE-650 M ion exchange chromatography, Toyopearl butyl-650 M hydrophobic interaction chromatography, and Toyopearl-HW 55 F gel filtration chromatography. SDS-PAGE of purified lipase exhibited a homogenous single band with a very high molecular weight of 100 kDa. The properties of purified lipase revealed maximum activity at pH 7.0 and 40 °C. It was also highly stable in a pH range of 6.0–7.0, retaining more than 90% activity for 24 h. It was stable at the temperature of 30–50 °C and maintained more than 80% activity for 16 h. The purified lipase performing the maximal activity in the presence of 20.0% NaCl indicated halophilic enzyme properties. Its lipolytic activity was highest against p-nitrophenyl palmitate. The lipase activity was found to be enhanced in hexane. The enzyme activity was stimulated in the presence of Zn2+, Ca2+, Mg2+, and Sr2+; while, it was completely inhibited by Ba2+ and Co2+. The enzyme had a K m and V max of 108.0 mg and 79.1 U mL?1, respectively.  相似文献   

10.
A soluble glucoside 3-dehydrogenase (G3DH) was purified from a newly isolated Sphingobacterium faecium ZJF-D6 CCTCC M 2013251. The enzyme was purified to 35.71-fold with a yield of 41.91 % and was estimated by sodium dodecyl sulphate–polyacrylamide gel electrophoresis with a molecular mass of 62 kDa. The sequences of two peptides of the enzyme were all contained in a GMC family oxidoreductase (EFK55866) by mass spectrometry analysis. The optimal pH of the enzyme was around 6.2. The enzyme was stable within a pH range of 5.0–6.6 and was sensitive to heat. G3DH from S. faecium exhibited extremely broad substrate specificity and well regioselectivity to validoxylamine A. The enzyme was completely inhibited by Hg2Cl2 and partly inhibited by Cu2+, Fe2+, Ca2+, and Cd2+. The apparent K m values for D-glucose, sucrose, and validoxylamine were calculated to be 1.1, 1.7, and 2.1 mM, respectively. With this purified enzyme, 3-keto sucrose was prepared at pH 5.0, 30 °C for 10 h with a yield of 28.7 %.  相似文献   

11.
l-Glutaminase (E.C.3.5.2.1) extracellularly produced by Bacillus cereus MTCC 1305 was purified to apparent homogeneity with a fine band. The molecular weight of native enzyme and its subunit were found to be approximately 140 and 35 kDa, respectively, which indicates its homotetrameric nature. The substrate specificity test of this enzyme showed its specificity for l-glutamine. The purified enzyme showed maximum activity at optimum pH 7.5 and temperature 35 °C. The enzyme retained stability up to 50 and 20 % even after treatment at 50 and 55 °C, respectively, for 30 min. Monovalent cations (Na+, K+) and phosphate ion activated the enzyme activity, while divalent cations (Mg2+, Mn2+, Zn2+, Pb2+, Ca2+, Co2+, Hg2+, Cd2+, Cu2+) inhibited its activity. Reducing agents (cysteine, glutathione, dithiothreitol, l-ascorbic acid, and β-mercaptoethanol) stimulated its activity, whereas thiol-binding agents (iodoacetamide, p-chloromercuribenzoic acid) resulted in the inhibition of this enzyme. Kinetic parameters, K m, V max, K cat, of purified enzyme were found to be 6.25 mM, 100 μmol/min/mg protein and 2.22?×?102 M?1s?1, respectively. The gradual inhibition in growth of hepatocellular carcinoma (Hep-G2) cell lines was found with IC50 value of 82.27 μg/ml in the presence of different doses of l-glutaminase (10–100 μg/ml).  相似文献   

12.
For the first time, CO2-expanded bio-based liquids were reported as novel and sustainable solvents for biocatalysis. Herein, it was found that by expansion with CO2, 2-methyltetrahydrofuran (MeTHF), and other bio-based liquids, which were not favorable solvents for immobilized Candida antarctica lipase B (Novozym 435) catalyzed transesterification, were tuned into excellent reaction media. Especially, for the kinetic resolution of challenging bulky secondary substrates such as rac-1-adamantylethanol, the lipase displayed very high activity with excellent enantioselectivity (E value > 200) in CO2-expanded MeTHF (MeTHF concentration 10% v/v, 6 MPa), whereas there was almost no activity observed in conventional organic solvents.  相似文献   

13.
An inulinase-producing strain, Paenibacillus polymyxa ZJ-9, was isolated from natural sources to produce R,R-2,3-butanediol via one-step fermentation of raw inulin extracted from Jerusalem artichoke tubers. The inulinase gene from P. polymyxa ZJ-9 was cloned and overexpressed in Escherichia coli BL21 (DE3), and the purified recombinant inulinase was estimated to be approximately 56 kDa by both sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS–PAGE) and gel filtration chromatography. This result suggests that the active form of the inulinase is probably a monomer. Terminal hydrolysis fructose units from the inulin indicate that enzymes are exo-inulinase. The purified recombinant enzyme showed maximum activity at 25 °C and pH 6.0, which indicate its extreme suitability for industrial applications. Zn2+, Fe2+, and Mg2+ stimulated the activity of the purified enzyme, whereas Co2+, Cu2+, and Ni2+ inhibited enzyme activity. The K m and V max values for inulin hydrolysis were 1.72 mM and 21.69 μmol min?1 mg?1 protein, respectively. The same parameters toward sucrose were 41.09 mM and 78.7 μmol min?1 mg?1 protein, respectively. Considering its substrate specificity and other enzymatic characteristics, we believe that this inulinase gene from P. polymyxa ZJ-9 could be transformed into other special bacterial strains to allow inulin conversion to other biochemicals and bioenergy through one-step fermentation.  相似文献   

14.
The propionyl-CoA dehydrogenase (PACD) gene was firstly cloned from Candida rugosa by the cDNA RACE technique. The 6× His-tagged recombinant PACD gene was expressed in Pichia pastoris GS115 and purified with Ni-NTA affinity chromatography. SDS-PAGE analysis and Western blotting revealed that the molecular mass of the purified PACD was 49 kDa. The results showed that the recombinant protein had the activity of catalyzing propionyl-CoA to acrylyl-CoA. The K m, k cat, and V max values of the purified PACD were calculated to be 40.86 μM, 0.566 s?1 and 0.693 U?mg?1 min?1. The optimal temperature and pH of the purified PACD were 30 °C and 7.0, respectively. The recombinant PACD maintained 76.3%, 30.1%, and 4.3% of its original activity after 2 h incubation in standard buffer at 30, 40, and 50 °C, respectively. Mg2+ had an activating effect on the enzyme, while Mn2+, Ca2+, Zn2+, and Cu2+ had weak inhibition. Since PACD catalyzed the key step (from propionyl-CoA to acrylyl-CoA) in the modified β-oxidation pathway from glucose to 3-hydroxypropionic acid (3-HP), the integration of recombinant PACD could benefit the engineered strains for effective production of 3-HP from the most abundant biomass–sugars.  相似文献   

15.
Hatching enzyme (HE) is of importance to degrade egg membrane to let the larvae be free. HE was purified and characterized from starfish blastula. The specific activity and the purification ratio of the purified HE with 110.9 kDa of molecular weight were 449.62 U/mg and 7.42-fold, respectively. Its optimal pH and temperature for activity were pH?8.0 and 30 °C, respectively. This enzyme was relatively stable in the range of pH?4.0–6.0 and 30–40 °C. This enzyme was inhibited by ethylene diamine tetraacetic acid (EDTA) and ethylene glycol tetraacetic acid, and also done moderately by Leupeptin, tosyl-lysine chloromethyl ketone, tosyl-phenylalanine chloromethyl ketone, and phenyl-methanesulfonyl fluoride. Zn2+ ion activated HE activity strongly and recovered the EDTA-pretreated activity more than did Ca2+, Mg2+, and Cu2+. Based on the results above, the starfish HE was classified as a zinc metallo- and trypsin-like serine protease. The values of Km, Vmax, and Kcat of the starfish HE on dimethyl casein were 0.31 mg/ml, 0.17 U/ml, and 122.70 s?1, respectively, whereas 1.09 mg/ml, 0.12 U/ml, and 771.98 s?1 on type I collagen. Therefore, the starfish HE could be a potential cosmeceutical because of its strong cleavage specificity on type I collagen.  相似文献   

16.
A cinnamyl alcohol dehydrogenase (CAD) from the secondary xylem of Leucaena leucocephala has been purified to homogeneity through successive steps of ammonium sulfate fractionation, DEAE cellulose, Sephadex G-75, and Blue Sepharose CL-6B affinity column chromatographies. CAD was purified to 514.2 folds with overall recovery of 13 % and specific activity of 812. 5 nkat/mg. Native and subunit molecular masses of the purified enzyme were found to be ~76 and ~38 kDa, respectively, suggesting it to be a homodimer. The enzyme exhibited highest catalytic efficiency (Kcat/Km 3.75 μM?1 s?1) with cinnamyl aldehyde among all the substrates investigated. The pH and temperature optima of the purified CAD were pH 8.8 and 40 °C, respectively. The enzyme activity was enhanced in the presence of 2.0 mM Mg2+, while Zn2+ at the same concentration exerted an inhibitory effect. The inclusion of 2.0 mM EDTA in the assay system activated the enzyme. The enzyme was inhibited with caffeic acid and ferulic acid in a concentration-dependent manner, while no inhibition was observed with salicylic acid. Peptide mass analysis of the purified CAD by MALDI-TOF showed a significant homology to alcohol dehydrogenases of MDR superfamily.  相似文献   

17.
An organic solvent-stable protease from Pseudomonas aeruginosa PT121 was purified in a single step with 55% recovery by hydrophobic interaction chromatography on a Phenyl Sepharose High Performance matrix. The purified protease was homogenous on SDS-PAGE and had an estimated molecular mass of 33 kDa. The optimal pH and temperature conditions for enzyme activity were 8.0 and 60°C, respectively. The enzyme was classified as a metalloprotease based on its strong inhibition by EDTA and 1,10-phenanthroline and exhibited good stability across a broad pH range (6.0–11.0). The protease was quite stable in the presence of various water-miscible organic solvents. This is a unique property of the protease which makes it an ideal choice for application in aqueous-organic phase organic synthesis including peptides synthesis. The synthetic activity of the protease was tested using N-carbobenzoxy-l-asparagine (Z-Asp) and l-phenylalaninamide (Phe-NH2) as substrate in the presence of various water-miscible organic solvents for aspartame precursor synthesis. The highest yield was obtained in the presence of 50% DMSO (91%). The synthesis rate in the presence of DMSO was also much higher than the rates in the other tested organic solvents, and the initial rates of Z-Asp-Phe-NH2 synthesis in mixtures of various water-miscible organic solvents, with the exception of ethanol, correlated with the yields of Z-Asp-Phe-NH2. Furthermore, the PT121 protease was able to use various carboxyl components (Z-AA) and Phe-NH2 as substrates to catalyze the syntheses of the dipeptides, indicating that this protease has a broad specificity for carboxylic acid residue.  相似文献   

18.
An extracellular organic solvent-tolerant lipase-producing bacterium was isolated from oil-contaminated soil samples and was identified taxonomically as Pseudomonas stutzeri, from which the lipase was purified and exhibited maximal activity at temperature of 50 °C and pH of 9.0. Meanwhile, the lipase was stable below or at 30 °C and over an alkaline pH range (7.5–11.0). Ca2+ could significantly improve the lipase thermal stability which prompts a promising application in biocatalysis through convenient medium engineering. The lipase demonstrated striking features such as distinct stability to the most tested hydrophilic and hydrophobic solvents (25 %, v/v), and DMSO could activate the lipase dramatically. In the enzyme-catalyzed resolution, lipase ZS04 manifested excellent enantioselective esterification toward the (R)-1-(4-methoxyphenyl)-ethanol (MOPE), a crucial chiral intermediate in pharmaceuticals as well as in other analogs with strict substrate specificity and theoretical highest conversion yield. This strong advantage over other related schemes made lipase ZS04 a promising biocatalyst in organic synthesis and pharmaceutical applications.  相似文献   

19.
An extracellular lipase from Fusarium solani strain (F. solani lipase (FSL)) was purified to homogeneity by ammonium sulphate precipitation, gel filtration and anion exchange chromatography. The purified enzyme has a molecular mass of 30 kDa as estimated by sodium dodecyl sulphate polyacrylamide gel electrophoresis. The 12 NH2-terminal amino acid residues showed a high degree of homology with a putative lipase from the fungus Necteria heamatoccocae. It is a serine enzyme, like all known lipases from different origins. Interestingly, FSL has not only lipase activity but also a high phospholipase activity which requires the presence of Ca2+ and bile salts. The specific activities of FSL were about 1,610 and 2,414 U/mg on olive oil emulsion and egg-yolk phosphatidylcholine as substrates, respectively, at pH 8.0 and 37 °C. The (phospho)lipase enzyme was stable in the pH range of 5–10 and at temperatures below 45 °C.  相似文献   

20.
The purified acidic α-amylase of Bacillus acidicola is a monomer of 66.0 kDa, optimally active at pH 4.0 and 60 °C. The enzyme is Ca2+ independent with T 1/2 for 18 min at 80 °C. The K m, V max, and catalytic efficiency (k cat/K m) of the enzyme are 1.6 mg mL?1, 23.8 μmol mg?1 min?1, and 981 μmol s?1, respectively. Among detergents, Tween 20, 40, and 80 stimulated enzyme activity, whereas sodium dodecyl sulfate and Triton X-100 inhibited even at low concentration. EGTA has not affected the activity, whereas EDTA β-mercaptoethanol, iodoacetic acid, and Dithiothreitol exhibited a slight inhibitory action. Phenylmethanesulfonyl fluoride, N-bromosuccinimide, and Hg2+ strongly inhibited enzyme activity. The experimental activation energy and temperature quotient are 50.12 kJ mol?1 and 1.37. When thermodynamic parameters (ΔH and ΔS) of the enzyme have been determined at different temperatures, ΔG is positive suggesting that the enzyme is thermostable. The enzyme hydrolyzes raw starches, and therefore, the enzyme finds application in raw starch saccharification at sub-gelatinization temperatures that saves energy needed for gelatinization of raw starch at 105 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号