首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Six new actinide metal thiophosphates have been synthesized by the reactive flux method and characterized by single-crystal X-ray diffraction: Cs(8)U(5)(P(3)S(10))(2)(PS(4))(6) (I), K(10)Th(3)(P(2)S(7))(4)(PS(4))(2) (II), K(5)U(PS(4))(3) (III), K(5)Th(PS(4))(3) (IV), Rb(5)Th(PS(4))(3) (V), and Cs(5)Th(PS(4))(3) (VI). Compound I crystallizes in the monoclinic space group P2(1)/c with a = 33.2897(1) A, b = 14.9295(1) A, c = 17.3528(2) A, beta = 115.478(1) degrees, Z = 8. Compound II crystallizes in the monoclinic space group C2/c with a = 32.8085(6) A, b = 9.0482(2) A, c = 27.2972(3) A, beta = 125.720(1) degrees, Z = 8. Compound III crystallizes in the monoclinic space group P2(1)/c with a = 14.6132(1) A, b = 17.0884(2) A, c = 9.7082(2) A, beta = 108.63(1) degrees, Z = 4. Compound IV crystallizes in the monoclinic space group P2(1)/n with a = 9.7436(1) A, b = 11.3894(2) A, c = 20.0163(3) A, beta = 90.041(1) degrees, Z = 4, as a pseudo-merohedrally twinned cell. Compound V crystallizes in the monoclinic space group P2(1)/c with a = 13.197(4) A, b = 9.997(4) A, c = 18.189(7) A, beta = 100.77(1) degrees, Z = 4. Compound VI crystallizes in the monoclinic space group P2(1)/c with a = 13.5624(1) A, b = 10.3007(1) A, c = 18.6738(1) A, beta = 100.670(1) degrees, Z = 4. Optical band-gap measurements by diffuse reflectance show that compounds I and III contain tetravalent uranium as part of an extended electronic system. Thorium-containing compounds are large-gap materials. Raman spectroscopy on single crystals displays the vibrational characteristics expected for [PS(4)](3)(-), [P(2)S(7)](4-), and the new [P(3)S(10)](5)(-) building blocks. This new thiophosphate building block has not been observed except in the structure of the uranium-containing compound Cs(8)U(5)(P(3)S(10))(2)(PS(4))(6).  相似文献   

2.
An alkali-metal sulfur reactive flux has been used to synthesize a series of quaternary rare-earth metal compounds. These include KLaP(2)S(6) (I), K(2)La(P(2)S(6))(1/2)(PS(4)) (II), K(3)La(PS(4))(2) (III), K(4)La(0.67)(PS(4))(2) (IV), K(9-x)La(1+x/3)(PS(4))(4) (x = 0.5) (V), K(4)Eu(PS(4))(2) (VI), and KEuPS(4) (VII). Compound I crystallizes in the monoclinic space group P2(1)/c with the cell parameters a = 11.963(12) A, b = 7.525(10) A, c = 11.389(14) A, beta = 109.88(4) degrees, and Z = 4. Compound II crystallizes in the monoclinic space group P2(1)/n with a = 9.066(6) A, b = 6.793(3) A, c = 20.112(7) A, beta = 97.54(3) degrees, and Z = 4. Compound III crystallizes in the monoclinic space group P2(1)/c with a= 9.141(2) A, b = 17.056(4) A, c = 9.470(2) A, beta = 90.29(2) degrees, and Z = 4. Compound IV crystallizes in the orthorhombic space group Ibam with a = 18.202(2) A, b = 8.7596(7) A, c = 9.7699(8) A, and Z = 4. Compound V crystallizes in the orthorhombic space group Ccca with a = 17.529(9) A, b = 36.43(3) A, c = 9.782(4) A, and Z = 8. Compound VI crystallizes in the orthorhombic space group Ibam with a = 18.29(5) A, b = 8.81(2) A, c= 9.741(10) A, and Z = 4. Compound VII crystallizes in the orthorhombic space group Pnma with a = 16.782(2) A, b = 6.6141(6) A, c = 6.5142(6) A, and Z = 4. The sulfur compounds are in most cases isostructural to their selenium counterparts. By controlling experimental conditions, these structures can be placed in quasi-quaternary phase diagrams, which show the reaction conditions necessary to obtain a particular thiophosphate anionic unit in the crystalline product. These structures have been characterized by Raman and IR spectroscopy and UV-vis diffuse reflectance optical band gap analysis.  相似文献   

3.
Five new rare-earth metal polyselenophosphates have been synthesized by the reactive flux method and characterized by single-crystal X-ray diffraction: K(2)La(P(2)Se(6))(1/2)(PSe(4)) (I), K(3)La(PSe(4))(2) (II), K(4)La(0.67)(PSe(4))(2) (III), K(9-x)()La(1+)(x/3)(PSe(4))(4) (x = 0.5) (IV), and KEuPSe(4) (V). Compound I crystallizes in the monoclinic space group P2(1)/n with a = 9.4269(1) A, b = 7.2054(1) A, c = 21.0276(5) A, beta = 97.484(1) degrees, and Z = 4. Compound II crystallizes in the monoclinic space group P2(1)/c with a = 9.5782(2) A, b = 17.6623(4) A, c = 9.9869(3) A, beta = 90.120(1) degrees, and Z = 4. Compound III crystallizes in the orthorhombic space group Ibam with a = 19.0962(2) A, b = 9.1408(1) A, c = 10.2588(2) A, and Z = 4. Compound IV crystallizes in the orthorhombic space group Ccca with a = 18.2133(1) A, b = 38.0914(4) A, c = 10.2665(1) A, and Z = 8. Compound V crystallizes in the orthorhombic space group Pnma with a = 17.5156(11) A, b = 7.0126(5) A, c = 6.9015(4) A, and Z = 4. Optical band gap measurements show that compound V has an optical band gap of 1.88 eV. Solid-state Raman spectroscopy of compounds II-V shows the four normal vibrations expected for the (PSe(4))(3-) unit. The observation of compounds I-V in several reactions has allowed the creation of a quasi-quaternary phase diagram for potassium rare-earth-metal polyselenophosphates. This phase diagram can qualitatively be separated into three regions on the basis of the oxidation state of phosphorus in the crystalline products observed and takes the next step in designing solid-state compounds.  相似文献   

4.
Four europium group XIV chalcogenides have been synthesized using the reactive flux method: K(2)EuTSe(5) (I, II) and KEuTS(4) (III, IV) where T = Si, Ge. K(2)EuSiSe(5), I, crystallizes in the monoclinic space group P2(1)/c with cell parameters a = 11.669(3) A, b = 9.844(2) A, c = 8.917(2) A, beta = 91.583(5) degrees, and Z = 4. K(2)EuGeSe(5), II, crystallizes in the monoclinic space group P2(1)/c with cell parameters a = 11.8056(3) A, b = 9.9630(1) A, c = 8.9456(1) A, beta = 91.195(1) degrees, and Z = 4. Both K(2)EuSiSe(5) and K(2)EuGeSe(5) are semiconductors with optical band-gaps of approximately 2.00 and 1.84 eV, respectively. Raman spectroscopy shows vibrations from the (TSe(5))(4-) (T = Si, Ge) unit. KEuSiS(4), III, crystallizes in the monoclinic space group P2(1) with cell parameters a = 6.426(4) A, b = 6.582(5) A, c = 8.566(7) A, beta = 107.83(6) degrees, and Z = 2. KEuGeS(4), IV, crystallizes in the monoclinic space group P2(1) with cell parameters a = 6.510(2) A, b = 6.649(2) A, c = 8.603(3) A, beta = 107.80(2) degrees, and Z = 2. Band-gap analysis shows that both compounds are semiconductors with optical band-gaps of 1.72 and 1.71 eV, respectively. The Raman spectrum of KEuGeS(4) shows the vibrations of the (GeS(4))(4-) unit. Fluorescence spectroscopy confirms the presence of Eu(III) in III and IV instead of Eu(II) as in I and II. These four crystalline products were formed under equivalent stoichiometric reaction conditions. The fact that two different products are observed can be used to understand the relationship between the oxidative and reductive potentials within these flux reactions.  相似文献   

5.
Wu Y  Bensch W 《Inorganic chemistry》2007,46(15):6170-6177
The reactions of Ti with in situ formed polythiophosphate fluxes of A(2)S(3) (A = Rb, Cs), P(2)S(5), and S at 500 degrees C result in the formation of two new quaternary titanium thiophosphates with compositions Rb(3)Ti(3)(P(4)S(13))(PS(4))(3) (1) and Cs(2)Ti(2)(P(2)S(8))(PS(4))(2) (2). Rb(3)Ti(3)(P(4)S(13))(PS(4))(3) (1) crystallizes in the chiral hexagonal space group P6(3) (No. 173) with lattice parameters a = 18.2475(9) Angstrom, c = 6.8687(3) Angstrom, V = 1980.7(2) Angstrom(3), Z = 2. Cs(2)Ti(2)(P(2)S(8))(PS(4))(2) (2) crystallizes in the noncentrosymmetric monoclinic space group Cc (No. 9) with a = 21.9709(14) Angstrom, b = 6.9093(3) Angstrom, c = 17.1489(10) Angstrom, beta = 98.79(1) degrees, V = 2572.7(2) Angstrom(3), Z = 4. In the structure of 1 TiS(6) octahedra, three [PS(4)] tetrahedra, and the hitherto unknown [P(4)S(13)](6-) anion are joined to form two different types of helical chains. These chains are connected yielding two different helical tunnels being directed along [001]. The tunnels are occupied by the Rb+ ions. The [P(4)S(13)](6-) anion is generated by three [PS(4)] tetrahedra sharing corners with one [PS(4)] group in the center of the starlike anion. The P atoms of the three [PS(4)] tetrahedra attached to the central [PS(4)] group define an equilateral triangle. The [P(4)S(13)](6-) anion may be regarded as a new member of the [P(n)S(3n+1)]((n+2)-) series. The structure of Cs(2)Ti(2)(P(2)S(8))(PS(4))(2) (2) consists of the one-dimensional polar tunnels containing the Cs(+) cations. The rare [P(2)S(8)](4-) anion which is composed of two [PS(4)] tetrahedra joined by a S(2)(2-) anion is a fundamental building unit in the structure of 2. One-dimensional undulated chains being directed along [100] are joined by [PS(4)] tetrahedra to form the three-dimensional network with polar tunnels running along [010]. The compounds are characterized with IR, Raman spectroscopy, and UV/vis diffuse reflectance spectroscopy.  相似文献   

6.
A series of [3 x 3] Mn(II)(9), antiferromagnetically coupled, alkoxide-bridged, square grid complexes, derived from a group of "tritopic" dihydrazide ligands, is described. The outer ring of eight Mn(II) centers in the grids is isolated magnetically from the central Mn(II) ion, leading to an S = 0 ground state for the ring, and an S = 5/2 ground state overall in each case. Exchange in the Mn(II)(8) ring can be represented by a 1D chain exchange model. Rich electrochemistry displayed by these systems has led to the production of Mn(II)/Mn(III) mixed-oxidation-state grids by both electrochemical and chemical means. Structures are reported for [Mn(9)(2poap)(6)](C(2)N(3))(6).10H(2)O (1), [Mn(9)(2poap)(6)](2)[Mn(NCS)(4)(H(2)O)](2)(NCS)(8).10H(2)O (2), [Mn(9)(2poapz)(6)](NO(3))(6).14.5H(2)O (3), [Mn(9)(2popp)(6)](NO(3))(6).12H(2)O (4), [Mn(9)(2pomp)(6)](MnCl(4))(2)Cl(2).2CH(3)OH.7H(2)O (5), and [Mn(9)(Cl2poap)(6)](ClO(4))(9).7H(2)O (6). Compound 1 crystallized in the tetragonal system, space group P4(2)/n, with a = 21.568(1) A, c = 16.275(1) A, and Z = 2. Compound 2 crystallized in the triclinic system, space group P, with a = 25.043(1) A, b = 27.413(1) A, c = 27.538(2) A, alpha = 91.586(2) degrees, beta = 113.9200(9) degrees, gamma = 111.9470(8) degrees, and Z = 2. Compound 3 crystallized in the triclinic system, space group P, with a = 18.1578(12) A, b = 18.2887(12) A, c = 26.764(2) A, alpha = 105.7880(12) degrees, beta = 101.547(2) degrees, gamma = 91.1250(11) degrees, and Z = 2. Compound 4 crystallized in the tetragonal system, space group P4(1)2(1)2, with a = 20.279(1) A, c = 54.873(6) A, and Z = 4. Compound 5 crystallized in the tetragonal system, space group I, with a = 18.2700(2) A, c = 26.753(2) A, and Z = 2. Compound 6 crystallized in the triclinic system, space group P, with a = 19.044(2) A, b = 19.457(2) A, c = 23.978(3) A, alpha = 84.518(3) degrees, beta = 81.227(3) degrees, gamma = 60.954(2) degrees, and Z = 2. Preliminary surface studies on Au(111), with a Mn(II) grid complex derived from a sulfur-derivatized ligand, indicate monolayer coverage via gold-sulfur interactions, and the potential for information storage at high-density levels.  相似文献   

7.
The reactions of the molecular transition metal iodates A[CrO(3)(IO(3))] (A = K, Rb, Cs) with UO(3) under mild hydrothermal conditions provide access to four new, one-dimensional, uranyl chromatoiodates, Rb[UO(2)(CrO(4))(IO(3))(H(2)O)] (1) and A(2)[UO(2)(CrO(4))(IO(3))(2)] (A = K (2), Rb (3), Cs (4)). Under basic conditions, MoO(3), UO(3), and KIO(4) can be reacted to form K(2)[UO(2)(MoO(4))(IO(3))(2)] (5), which is isostructural with 2 and 3. The structure of 1 consists of one-dimensional[UO(2)(CrO(4))(IO(3))(H(2)O)](-) ribbons that contain uranyl moieties bound by bridging chromate and iodate anions as well as a terminal water molecule to create [UO(7)] pentagonal bipyramidal environments around the U(VI) centers. These ribbons are separated from one another by Rb(+) cations. When the iodate content is increased in the hydrothermal reactions, the terminal water molecule is replaced by a monodentate iodate anion to yield 2-4. These ribbons can be further modified by replacing tetrahedral chromate anions with MoO(4)(2)(-) anions to yield isostructural, one-dimensional [UO(2)(MoO(4))(IO(3))(2)](2)(-) ribbons. Crystallographic data: 1, triclinic, space group P(-)1, a = 7.3133(5) A, b = 8.0561(6) A, c = 8.4870(6) A, alpha = 88.740(1) degrees, beta = 87.075(1) degrees, gamma = 71.672(1) degrees, Z = 2; 2, monoclinic, space group P2(1)/c, a = 11.1337(5) A, b = 7.2884(4) A, c = 15.5661(7) A, beta = 107.977(1) degrees, Z = 4; 3, monoclinic, space group P2(1)/c, a = 11.3463(6) A, b = 7.3263(4) A, c = 15.9332(8) A, beta = 108.173(1) degrees, Z = 4; 4, monoclinic, space group P2(1)/n, a = 7.3929(5) A, b = 8.1346(6) A, c = 22.126(2) A, beta = 90.647(1) degrees, Z = 4; 5, monoclinic, space group P2(1)/c, a = 11.3717(6) A, b = 7.2903(4) A, c = 15.7122(8) A, beta = 108.167(1) degrees, Z = 4.  相似文献   

8.
Single crystals of A2ThP3Se9 (A = K (I), Rb (II)) and Cs4Th2PsSe17 (III) form from the reaction of Th and P in a molten A2Se3/Se (A = K, Rb, Cs) flux at 750 degrees C for 100 h. Compound I crystallizes in the triclinic space group P1 (No. 2) with unit cell parameters a = 10.4582(5) A, b = 16.5384(8) A, c = 10.2245(5) A, alpha = 107.637(1); beta = 91.652(1); gamma = 90.343(1) degrees, and Z = 2. Compound II crystallizes in the triclinic space group P1 (No. 2) with the unit cell parameters a = 10.5369(5) A, b = 16.6914(8) A, c = 10.2864(5) A, alpha = 107.614(1) degrees, beta = 92.059(1) degrees, gamma = 90.409(1) degrees, and Z = 2. These structures consist of infinite chains of corner-sharing [Th2Se14] units linked by (P2Se6)4- anions in two directions to form a ribbonlike structure along the [100] direction. Compounds I and II are isostructural with the previously reported K2UP3Se9. Compound III crystallizes in the monoclinic space group P2(1)/c (No. 14) with unit cell parameters a = 10.238(1) A, b = 32.182(2) A, c = 10.749(1) A; beta = 95.832(1) degrees, and Z = 4. Cs4Th2P5Se17 consists of infinite chains of corner-sharing, polyhedral [Th2Se13] units that are also linked by (P2Se6)4- anions in the [100] and [010] directions to form a layered structure. The structure of III features an (Se2)2- anion that is bound eta 2 to Th(2) and eta 1 to Th(1). This anion influences the coordination sphere of the 9-coordinate Th(2) atom such that it is best described as bicapped trigonal prismatic where the eta 2-bound anion occupies one coordination site. The composition of III may be formulated as Cs4Th2(P2Se6)5/2(Se2) due to the presence of the (Se2)2- unit. Raman spectra for these compounds and their interpretation are reported.  相似文献   

9.
The reaction of Mn and Cd in alkali metal polythioarsenate fluxes afforded four new compounds featuring molecular anions. K(8)[Mn(2)(AsS(4))(4)] (I) crystallizes in the monoclinic space group P2/n with a = 9.1818(8) A, b = 8.5867(8) A, c = 20.3802(19) A, and beta = 95.095(2) degrees. Rb(8)[Mn(2)(AsS(4))(4)] (II) and Cs(8)[Mn(2)(AsS(4))(4)] (III) both crystallize in the triclinic space group P1 with a = 9.079(3) A, b = 9.197(3) A, c = 11.219(4) A, alpha = 105.958(7) degrees, beta = 103.950(5) degrees, and gamma = 92.612(6) degrees for II and a = 9.420(5) A, b = 9.559(5) A, c = 11.496(7) A, alpha = 105.606(14) degrees, beta = 102.999(12) degrees, and gamma = 92.423(14) degrees for III. The discrete dimeric [Mn(2)(AsS(4))(4)](8-) clusters in these compounds are composed of two octahedral Mn(2+) ions bridged by two [AsS(4)](3-) units and chelated each by a [AsS(4)](3-) unit. Rb(8)[Cd(2)(AsS(4))(2)(AsS(5))(2)] (IV) crystallizes in P1 with a = 9.122(2) A, b = 9.285(2) A, c = 12.400(3) A, alpha = 111.700(6) degrees, beta = 108.744 degrees, and gamma = 90.163(5) degrees. Owing to the greater size of Cd compared to Mn, the Cd centers in this compound are bridged by [AsS(5)](3-) units. The [Cd(2)(AsS(4))(4)](8-) cluster is a minor component cocrystallized in the lattice. These compounds are yellow in color and soluble in water.  相似文献   

10.
Treatment of HgCl(2) with 2-LiC(6)H(4)PPh(2) gives [Hg(2-C(6)H(4)PPh(2))(2)] (1), whose phosphorus atoms take up oxygen, sulfur, and borane to give the compounds [Hg[2-C(6)H(4)P(X)Ph(2)](2)] [ X = O (3), S (4), and BH(3) (5)], respectively. Compound 1 functions as a bidentate ligand of wide, variable bite angle that can span either cis or trans coordination sites in a planar complex. Representative complexes include [HgX(2) x 1] [X = Cl (6a), Br (6b)], cis-[PtX(2) x 1] [X = Cl (cis-7), Me (9), Ph (10)], and trans-[MX(2) x 1] [X = Cl, M = Pt (trans-7), Pd (8), Ni (11); X = NCS, M = Ni (13)] in which the central metal ions are in either tetrahedral (6a,b) or planar (7-11, 13) coordination. The trans disposition of 1 in complexes trans-7, 8, and 11 imposes close metal-mercury contacts [2.8339(7), 2.8797(8), and 2.756(8) A, respectively] that are suggestive of a donor-acceptor interaction, M --> Hg. Prolonged heating of 1 with [PtCl(2)(cod)] gives the binuclear cyclometalated complex [(eta(2)-2-C(6)H(4)PPh(2))Pt(mu-2-C(6)H(4)PPh(2))(2)HgCl] (14) from which the salt [(eta(2)-2-C(6)H(4)PPh(2))Pt(mu-2-C(6)H(4)PPh(2))(2)Hg]PF(6) (15) is derived by treatment with AgPF(6). In 14 and 15, the mu-C(6)H(4)PPh(2) groups adopt a head-to-tail arrangement, and the Pt-Hg separation in 14, 3.1335(5) A, is in the range expected for a weak metallophilic interaction. A similar arrangement of bridging groups is found in [Cl((n)Bu(3)P)Pd(mu-C(6)H(4)PPh(2))(2)HgCl] (16), which is formed by heating 1 with [PdCl(2)(P(n)()Bu(3))(2)]. Reaction of 1 with [Pd(dba)(2)] [dba = dibenzylideneacetone] at room temperature gives [Pd(1)(2)] (19) which, in air, forms a trigonal planar palladium(0) complex 20 containing bidentate 1 and the monodentate phosphine-phosphine oxide ligand [Hg(2-C(6)H(4)PPh(2))[2-C(6)H(4)P(O)Ph(2)]]. On heating, 19 eliminates Pd and Hg, and the C-C coupled product 2-Ph(2)PC(6)H(4)C(6)H(4)PPh(2)-2 (18) is formed by reductive elimination. In contrast, 1 reacts with platinum(0) complexes to give a bis(aryl)platinum(II) species formulated as [Pt(eta(1)-C-2-C(6)H(4)PPh(2))(eta(2)-2-C(6)H(4)PPh(2))(eta(1)-P-1)]. Crystal data are as follows. Compound 3: monoclinic, P2(1)/n, with a = 11.331(3) A, b = 9.381(2) A, c = 14.516 A, beta = 98.30(2) degrees, and Z = 2. Compound 6b x 2CH(2)Cl(2): triclinic, P macro 1, with a = 12.720(3) A, b = 13.154(3) A, c = 12.724(2) A, alpha = 92.01(2) degrees, beta = 109.19(2) degrees, gamma = 90.82(2) degrees, and Z = 2. Compound trans-7 x 2CH(2)Cl(2): orthorhombic, Pbca, with a = 19.805(3) A, b = 8.532(4) A, c = 23.076(2) A, and Z = 4. Compound 11 x 2CH(2)Cl(2): orthorhombic, Pbca, with a = 19.455(3) A, b = 8.496(5) A, c = 22.858(3) A, and Z = 4. Compound 14: monoclinic, P2(1)/c, with a = 13.150(3) A, b = 12.912(6) A, c = 26.724(2) A, beta = 94.09(1) degrees, and Z = 4. Compound 20 x C(6)H(5)CH(3).0.5CH(2)Cl(2): triclinic, P macro 1, with a = 13.199(1) A, b = 15.273(2) A, c = 17.850(1) A, alpha = 93.830(7), beta = 93.664(6), gamma = 104.378(7) degrees, and Z = 2.  相似文献   

11.
Wu Q  Lavigne JA  Tao Y  D'Iorio M  Wang S 《Inorganic chemistry》2000,39(23):5248-5254
A new 7-azaindole zinc(II) compound, Zn(7-azaindole)2(CH3COO)2 (1), a new ligand N-(2-pyridyl)-7-azaindole (NPA), and two NPA zinc(II) complexes, Zn(NPA)(CH3COO)2 (2) and Zn(NPA)((S)-(+)-CH3CH2CH(CH3)COO)2 (3), have been synthesized and structurally characterized. Compound 1 has a tetrahedral geometry, whereas compounds 2 and 3 have irregular six-coordinate geometry. The NPA ligand in compounds 2 and 3 functions as a bidentate chelate to the zinc center. Compound 1 has a blue luminescence in the solution and the solid state. Compounds 2 and 3 emit a blue color in the solid state. In solution, compounds 2 and 3 are fluxional, as established by 1H NMR experiments. Compound 1 is thermally stable, whereas compounds 2 and 3 undergo decomposition when heated in the solid state. A blue electroluminescent device using compound 1 as the emitting layer has been fabricated. Crystal data: NPA, monoclinic, P2(1)/c, a = 13.993(5) A, b = 8.456(3) A, c = 16.886(5) A, beta = 104.666(12) degrees, V = 1932.9(11) A3; 1, triclinic, P1, a = 9.5114(18) A, b = 10.460(7) A, c = 11.002(3) A, alpha = 117.18(3) degrees, beta = 103.287(18) degrees, gamma = 90.94(2) degrees, V = 938.3(7) A3; 2, monoclinic, C2/c, a = 13.234(6) A, b = 9.373(3) A, c = 13.956(7) A, beta = 113.24(3) degrees, V = 1590.7(12) A3; 3, monoclinic, P2(1), a = 11.047(7) A, b = 15.343(9) A, c = 13.785(8) A, beta = 100.123(9) degrees, V = 2300(2) A3.  相似文献   

12.
The reactions of Ga(CH(2)CH(3))(3) with variable amounts of elemental sulfur, S(8), in toluene or benzene at different temperatures result in the insertion of sulfur into the Ga-C bonds to form the compounds Ga[(S-S)CH(2)CH(3)](3) (I) and Ga[(S-S-S)CH(2)CH(3)](3) (II). Compound I was isolated from the reaction at low temperature while at room temperature; compound II was the major product. Compound II exhibited the maximum extent of sulfur insertion even when the reactions were carried out with more than 9.0 equiv of sulfur. The reactions of Ga(CH(3))(3) with various amounts of sulfur in toluene or benzene only result in the formation of compound III, Ga[(S-S)CH(3)](3). In pyridine at -30 degrees C, deinsertion of the sulfur atoms from Ga-S-S-C bonds was observed for the first time from compounds I and III resulting in formation of the six-membered Ga-S ring compounds IV, [PyEtGaS](3), and V, [PyMeGaS](3), respectively. Compounds IV and V were characterized by (1)H NMR, (13)C NMR, elemental analyses, thermogravimetric analysis, and single-crystal X-ray diffraction. Compound IV crystallized in the monoclinic space group P2(1)/n, with a = 9.288(2) ?, b = 14.966(2) ?, c = 19.588(3) ?, beta = 90.690(10) degrees, and Z = 4. Compound V crystallized in the monoclinic space group P2(1)/c, with a = 10.385(1) ?, b = 15.300(2) ?, c = 15.949(2) ?, beta = 107.01(1) degrees, Z = 4, unit cell volume = 2423.5(5) ?(3), R = 0.030, and R(w) = 0.026. The sulfur insertion reaction pathway was investigated by time-dependent and variable-temperature (1)H NMR spectroscopy.  相似文献   

13.
The nickel coordination chemistry of a series of polytopic diazine (N-N) based ligands has been examined. Self-assembly reactions lead to examples of dinuclear, trinuclear, tetranuclear, pentanuclear, and octanuclear complexes, all of which exhibit magnetic exchange coupling, with antiferromagnetic and ferromagnetic examples. Structural details are presented for [(L1)(2)Ni(2)(H(2)O)(2)](NO(3))(4).3H(2)O (1), [(L2)(2)Ni(3)(H(2)O)(2)](NO(3))(6).8H(2)O (2), [(L3)(4)Ni(4)(H(2)O)(8)] (NO(3))(4).8H(2)O (3), [(L4)(2)Ni(5)(H(2)O)(10)(NO(3))](NO(3))(7).8H(2)O (4), and [(L5)(4)Ni(8)(H(2)O)(8)](BF(4))(8).16H(2)O (5). Compound 1 crystallizes in the monoclinic system, space group P2(1)/c, with a = 14.937(1) A, b = 18.612(2) A, c = 20.583(2) A, beta = 108.862(2) degrees, Z = 4. Compound 2 crystallizes in the orthorhombic system, space group P2(1)2(1)2, with a = 21.771(4) A, b = 13.700(2) A, c = 20.017(3) A, Z = 4. Compound 3 crystallizes in the tetragonal system, space group P4(3), with a = 12.9483(7) A, c = 33.416(3) A, Z = 4. Compound 4 crystallizes in the triclinic system, space group P(-)1, with a = 12.6677(8) A, b = 18.110(1) A, c = 19.998(1) A, alpha = 100.395(1) degrees, beta = 109.514(1) degrees, gamma = 109.686(1) degrees, Z = 2. Compound 5 crystallizes in the monoclinic system, space group P2(1)/n, with a = 21.153(5) A, b = 35.778(9) A, c = 21.823(5) A, beta = 97.757(6) degrees, Z = 4. The linear trinuclear Ni(II) complex (2) has a cis-N-N single bond bridge, and a water bridge linking the central Ni(II) to each external Ni(II) center in each of two similar trinuclear subunits, and exhibits intramolecular ferromagnetic exchange (J = 5.0 cm(-1)). A novel octanuclear metallacyclic ring structure exists in 5, with trans-N-N single bond bridges linking adjacent Ni(II) centers, leading to quite strong intramolecular antiferromagnetic exchange (J = -30.4 cm(-1)).  相似文献   

14.
Synthetic exploration of K/Cu/Th/S quaternary phase space has yielded three new compounds: KCuThS3 (I), K2Cu2ThS4 (II), and K3Cu3Th2S7 (III). All three phases are semiconductors with optical band gaps of 2.95, 2.17, and 2.49 eV(I-III). Compound I crystallizes in the orthorhombic space group Cmcm with a = 4.076(1) A, b = 13.864(4) A, and c = 10.541(3) A. Compound II crystallizes in the monoclinic space group C2/m with a = 14.522(1) A, b = 4.026(3) A, and c = 7.566(6) A; beta = 109.949(1) degrees . Compound III crystallizes in orthorhombic space group Pbcn with a = 4.051(2) A, b = 14.023(8) A, and c = 24.633(13) A. The compounds are all layered materials, with each layer composed of threads of edge-sharing ThS6 octahedra bridged by CuS4 tetrahedral threads of varying dimension. The layers are separated by well-ordered potassium ions. The relatively wide range of optical band gaps is attributed to the extent of the CuS4 motifs. As the dimension of the CuS4 chains increases, band gaps decrease in the series. All materials were characterized by single-crystal X-ray diffraction, microprobe chemical analysis, and diffuse reflectance spectroscopy (NIR-UV).  相似文献   

15.
The reaction of Ta with an in situ formed polythiophosphate melt of Cs2S3, P2S5, and S yields the two new quaternary tantalum thiophosphates Cs2Ta2P2S12 (I) and Cs4Ta4P4S24 (II). Both compounds were obtained with the same stoichiometric ratio but at different reaction temperatures. Compound I was prepared at 873 K and crystallizes in the monoclinic space group P2(1)/c (No. 14) with a = 8.862(2) A, b = 12.500(3) A, c = 17.408(4) A, beta = 99.23(3) degrees, and Z = 4. Compound II was prepared at 773 K and crystallizes in the monoclinic space group P2(1)/n (No. 14) with a = 14.298(3) A, b = 17.730(4) A, c = 16.058(3) A, beta = 106.19(3) degrees, and Z = 4. The two structures are closely related and exhibit two-dimensional anionic layers consisting of dimeric [Ta2S11] units which are linked by two tetradentate and two tridentate [PS4] tetrahedra. The significant difference between these two compounds is the orientation of the [Ta2S11] units in infinite [Ta2S4(PS4)]x chains which are subunits of both structures. The specific orientation of the [Ta2S11] blocks in compound I leads to the formation of one cavity in the 2(infinity)[Ta2P2S12]2- layers, whereas in compound II two types of cavities are observed in the 2(infinity)[Ta4P4S24]4- layers. The Cs+ ions are located between the layers above and below the cavities. The compounds were characterized with infrared spectroscopy in the MIR region, Raman spectroscopy, and UV/Vis diffuse reflectance spectroscopy. When Cs4Ta4P4S24 (II) is heated at the synthesis temperature of compound I it is fully converted into compound I.  相似文献   

16.
The tetraphenylimidodiphosphinate [N-(P,P-diphenylphosphinoyl)-P,P-diphenylphosphinimidate] ion forms stable tris-chelates with the Bi(III), In(III), and Ga(III) cations. The crystal and molecular structures of [M{(OPPh(2))(2)N}(3)] (M = Ga, In, Bi) were determined by X-ray diffractometry. The geometry around the bismuth atom in compound 3 displays an approximately C(3)(v)() symmetry. This arrangement suggests the presence of a stereoactive lone pair of electrons, which is located in one of the triangular octahedral faces. Derivative 3 crystallizes in the triclinic space group P&onemacr; with Z = 2, a = 14.006(6) ?, b = 14.185(4) ?, c = 17.609(8) ?, alpha = 88.45(2) degrees, beta = 79.34(2) degrees, and gamma = 78.23(2) degrees. The structures of the gallium(III) and indium(III) tris-chelate oxygen-based complexes (1 and 2, respectively) were compared with the bismuth analogue in order to determine the ligand steric bulk influence on the coordination sphere in the absence of the electron lone pair. Complex 1 crystallizes as the [Ga{(OPPh(2))(2)N}(3)].CH(2)Cl(2) solvate in the triclinic space group P&onemacr;; Z = 2, a = 13.534(4) ?, b = 13.855(4) ?, c = 18.732(7) ?, alpha = 95.48(2) degrees, beta = 98.26(2) degrees, and gamma = 97.84(2) degrees. Crystal data for the benzene solvate of 2, [In{(OPPh(2))(2)N}(3)].C(6)H(6): triclinic space group P&onemacr;, Z = 2, a = 13.542(9) ?, b = 15.622(3) ?, c = 18.063(5) ?, alpha = 98.21(1) degrees, beta = 104.77(0) degrees, and gamma = 92.260(0) degrees.  相似文献   

17.
The syntheses, structural characterization, and magnetic behavior of the three new polynuclear copper(II) complexes with formulas [Cu(4)(eta(2):mu-CH(3)COO)(2)(mu-OH)(2)(mu-OH(2))(mu-bdmap)(2)](ClO(4))(2).H(2)O (1), [Cu(8)(NCO)(2)(eta(1):mu-NCO)(4)(mu-OH)(2)(mu(3)-OH)(2)(mu-OH(2))(3)(mu-bdmap)(4)](ClO(4))(2)x2H(2)O (2), and [Cu(9)(eta(1):mu-NCO)(8)(mu(3)-OH)(4)(OH(2))(2)(mu-bdmap)(4)](ClO(4))(2).4H(2)O (3), in which bdmapH is 1,3-bis(dimethylamino)-2-propanol, are reported. Tetranuclear complex 1 crystallizes in the triclinic system, space group P, with unit cell parameters a = 12.160(1) A, b = 13.051(1) A, c = 13.235(1) A, alpha = 110.745(1) degrees , beta = 109.683(1) degrees , gamma = 97.014(1), and Z = 2. Octanuclear complex 2 crystallizes in the monoclinic system, space group C2/c, with unit cell parameters a = 26.609(1) A, b = 14.496(1) A, c = 16.652(1) A, beta = 97.814(1) degrees , and Z = 4, and nonanuclear complex 3 crystallizes in the monoclinic system, space group C2/c, with unit cell parameters a = 24.104(1) A, b = 13.542(1) A, c = 24.355(1) A, beta = 109.98(1) degrees , and Z = 4. The magnetic behavior of the three complexes has been checked showing strong antiferromagnetic coupling in all the cases.  相似文献   

18.
Amine-templated vanadium sulfates of the formula [HN(CH(2))(6)NH][(V(IV)O)(2)(OH)(2)(SO(4))(2)].H(2)O, I, [H(3)N(CH(2))(2)NH(3)][V(III)(OH)(SO(4))(2)].H(2)O, II, and [H(2)N(CH(2))(4)NH(2)][(V(IV)O)(H(2)O)(SO(4))(2)], III, have been prepared under hydrothermal conditions. These vanadium sulfates add to the new emerging family of organically templated metal sulfates. Compound I has a linear chain structure consisting of V(2)O(8) square-pyramid dimers connected by corner-sharing SO(4) tetrahedra, creating four-membered rings along the chain. Both II and III possess simple linear chain topologies formed by VO(6) octahedra and SO(4) tetrahedra, with II having the tancoite chain structure. Compound I crystallizes in the triclinic space group P1 (No. 2) with a = 7.4852(4) A, b = 9.5373(5) A, c = 11.9177(6) A, alpha = 77.22 degrees, beta = 76.47(2) degrees, gamma = 80.86 degrees, Z = 2. Compound II: monoclinic, space group P2(1)/c (No. 14), a = 6.942(2) A, b = 10.317(3) A, c = 15.102(6) A, beta = 90.64(4) degrees, Z = 4. Compound III: triclinic, space group P1 (No. 2) with a = 6.2558(10) A, b = 7.0663(14) A, c = 15.592(4) A, alpha = 90.46(2) degrees, beta = 90.47(2) degrees, gamma = 115.68(2) degrees, Z = 2. Magnetic susceptibility measurements reveal weak antiferromagnetic interactions in I and III and ferromagnetic interactions in II.  相似文献   

19.
Chen X  Huang X  Li J 《Inorganic chemistry》2001,40(6):1341-1346
Three novel metal polytellurides Rb(4)Hg(5)(Te(2))(2)(Te(3))(2)Te(3) (I), [Zn(en)(3)](4)In(16)(Te(2))(4)(Te(3))Te(22) (II), and K(2)Cu(2)(Te(2))(Te(3)) (III) have been prepared by solvothermal reactions in superheated ethylenediamine at 160 degrees C. Their crystal structures have been determined by single-crystal X-ray diffraction techniques. Crystal data for I: space group Pnma, a = 9.803(2) A, b = 9.124(2) A, c = 34.714(7) A, Z = 4. Crystal data for II: space group C2/c, a = 36.814(7) A, b = 16.908(3) A, c = 25.302(5) A, beta = 128.46(3) degrees, Z = 4. Crystal data for III: space group Cmcm, a = 11.386(2) A, b = 7.756(2) A, c = 11.985(2) A, Z = 4. The crystal structure of I consists of 1D infinite ribbons of [Hg(5)(Te(2))(2)(Te(3))(2)Te(3)](4-), which are composed of tetrahedral HgTe(4) and trigonal HgTe(3) units connected through the bridging Te(2-), (Te(2))(2-), and (Te(3))(2-) ligands. II is a layered compound containing InTe(4) tetrahedra that share corners and edges via Te, Te(2), and Te(3) units to form a 2D slab that contains relatively large voids. The [Zn(en)(3)](2+) template cations are filled in these voids and between the slabs. The primary building blocks of III are CuTe(4) tetrahedra that are linked by intralayer (Te(3))(2-) and interlayer (Te(2))(2-) units to form a 3D network with open channels that are occupied by the K(+) cations. All three compounds are rare polytelluride products of solvothermal reactions that contain both Te(2) and Te(3) fragments with unusual metal-tellurium coordination.  相似文献   

20.
The metathetical reactions of the lithium derivative of the monoanion [((t)BuN)(S)P(mu-N(t)Bu)(2)P(S)(NH(t)Bu)](-) (L) with CuCl/PPh(3), NiCl(2)(PEt(3))(2), PdCl(2)L'(2) (L' = PhCN, PPh(3)), and PtCl(2)(PEt(3))(2) produced the complexes (PPh(3))CuL (5), NiL(2) (6), PdCl(L)(PPh(3)) (7), PdL(2) (8), and Pt(PEt(3))(2)[((t)BuN)(S)P(mu-N(t)Bu)(2)P(S)(N(t)Bu)] (9). The X-ray structures of 5, 6, and 8 reveal a N,S-coordination for the chelating monoanion L with the metal centers in trigonal planar, tetrahedral, and square planar environments, respectively. By contrast, the dianionic ligand in the square planar Pt(II) complex 9 is S,S'-chelated to the metal center. (31)P NMR spectra readily distinguish between the N,S and S,S' bonding modes, and, on that basis, N,S chelation is inferred for the Pd(II) complex 7. Crystal data: 5, monoclinic, P2(1)/c, a = 19.175(4) A, b = 20.331(4) A, c = 10.017(6) A, beta = 91.79(3) degrees, V = 3903(2) A(3), and Z = 4; 6, orthorhombic, Pbcn, a = 14.298(5) A, b = 15.333(5) A, c = 24.378(5) A, beta = 90.000(5) degrees, V = 5344(3) A(3), and Z = 4; 8, monoclinic, P2(1)/n, a = 13.975(3) A, b = 14.283(3) A, c = 15.255(4) A, beta = 116.565(18) degrees, V = 2723.5(11) A(3), and Z = 2; 9, monoclinic, P2(1)/n, a = 12.479(6) A, b = 21.782(7) A, c = 17.048(5) A, beta = 100.30(3) degrees, V = 4559(3) A(3), and Z = 4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号