首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For a fixed multigraph H with vertices w1,…,wm, a graph G is H-linked if for every choice of vertices v1,…,vm in G, there exists a subdivision of H in G such that vi is the branch vertex representing wi (for all i). This generalizes the notions of k-linked, k-connected, and k-ordered graphs.Given a connected multigraph H with k edges and minimum degree at least two and n7.5k, we determine the least integer d such that every n-vertex simple graph with minimum degree at least d is H-linked. This value D(H,n) appears to equal the least integer d such that every n-vertex graph with minimum degree at least d is b(H)-connected, where b(H) is the maximum number of edges in a bipartite subgraph of H.  相似文献   

2.
S. Mishra  S.B. Rao 《Discrete Mathematics》2006,306(14):1586-1594
In this paper we consider a graph optimization problem called minimum monopoly problem, in which it is required to find a minimum cardinality set SV, such that, for each uV, |N[u]∩S|?|N[u]|/2 in a given graph G=(V,E). We show that this optimization problem does not have a polynomial-time approximation scheme for k-regular graphs (k?5), unless P=NP. We show this by establishing two L-reductions (an approximation preserving reduction) from minimum dominating set problem for k-regular graphs to minimum monopoly problem for 2k-regular graphs and to minimum monopoly problem for (2k-1)-regular graphs, where k?3. We also show that, for tree graphs, a minimum monopoly set can be computed in linear time.  相似文献   

3.
Let G be a graph and d(u) denote the degree of a vertex u in G. The zeroth-order general Randi? index 0Rα(G) of the graph G is defined as ∑uV(G)d(u)α, where the summation goes over all vertices of G and α is an arbitrary real number. In this paper we correct the proof of the main Theorem 3.5 of the paper by Hu et al. [Y. Hu, X. Li, Y. Shi, T. Xu, Connected (n,m)-graphs with minimum and maximum zeroth-order general Randi? index, Discrete Appl. Math. 155 (8) (2007) 1044-1054] and give a more general Theorem. We finally characterize 1 for α<0 the connected G(n,m)-graphs with maximum value 0Rα(G(n,m)), where G(n,m) is a simple connected graph with n vertices and m edges.  相似文献   

4.
In 1990, Acharya and Hegde introduced the concept of strongly k-indexable graphs: A (p,q)-graph G=(V,E) is said to be strongly k-indexable if its vertices can be assigned distinct numbers 0,1,2,…,p−1 so that the values of the edges, obtained as the sums of the numbers assigned to their end vertices form an arithmetic progression k,k+1,k+2,…,k+(q−1). When k=1, a strongly k-indexable graph is simply called a strongly indexable graph. In this paper, we report some results on strongly k-indexable graphs and give an application of strongly k-indexable graphs to plane geometry, viz; construction of polygons of same internal angles and sides of distinct lengths.  相似文献   

5.
A graph G is clique-perfect if the cardinality of a maximum clique-independent set of H equals the cardinality of a minimum clique-transversal of H, for every induced subgraph H of G. A graph G is coordinated if the minimum number of colors that can be assigned to the cliques of H in such a way that no two cliques with non-empty intersection receive the same color equals the maximum number of cliques of H with a common vertex, for every induced subgraph H of G. Coordinated graphs are a subclass of perfect graphs. The complete lists of minimal forbidden induced subgraphs for the classes of clique-perfect and coordinated graphs are not known, but some partial characterizations have been obtained. In this paper, we characterize clique-perfect and coordinated graphs by minimal forbidden induced subgraphs when the graph is either paw-free or {gem, W4, bull}-free, both superclasses of triangle-free graphs.  相似文献   

6.
T?naz Ekim 《Discrete Mathematics》2009,309(19):5849-5856
Given integers j and k and a graph G, we consider partitions of the vertex set of G into j+k parts where j of these parts induce empty graphs and the remaining k induce cliques. If such a partition exists, we say G is a (j,k)-graph. For a fixed j and k we consider the maximum order n where every graph of order n is a (j,k)-graph. The split-chromatic number of G is the minimum j where G is a (j,j)-graph. Further, the cochromatic number is the minimum j+k where G is a (j,k)-graph. We examine some relations between cochromatic, split-chromatic and chromatic numbers. We also consider some computational questions related to chordal graphs and cographs.  相似文献   

7.
Ryuichi Mori   《Discrete Mathematics》2008,308(22):5280-5283
A graph G is (m,n)-linked if for any two disjoint subsets R,BV(G) with |R|m and |B|n, G has two disjoint connected subgraphs containing R and B, respectively. We shall prove that a planar graph with at least six vertices is (3,3)-linked if and only if G is 4-connected and maximal.  相似文献   

8.
An L(p,q)-labeling of a graph G is an assignment f from vertices of G to the set of non-negative integers {0,1,…,λ} such that |f(u)−f(v)|≥p if u and v are adjacent, and |f(u)−f(v)|≥q if u and v are at distance 2 apart. The minimum value of λ for which G has L(p,q)-labeling is denoted by λp,q(G). The L(p,q)-labeling problem is related to the channel assignment problem for wireless networks.In this paper, we present a polynomial time algorithm for computing L(p,q)-labeling of a bipartite permutation graph G such that the largest label is at most (2p−1)+q(bc(G)−2), where bc(G) is the biclique number of G. Since λp,q(G)≥p+q(bc(G)−2) for any bipartite graph G, the upper bound is at most p−1 far from optimal.  相似文献   

9.
Let G be an edge weighted graph with n nodes, and let A(3,G) be the average weight of a triangle in G. We show that the number of triangles with weight at most equal to A(3,G) is at least (n−2) and that this bound is sharp for all n≥7. Extensions of this result to cliques of cardinality k>3 are also discussed.  相似文献   

10.
A graph G is Eulerian-connected if for any u and v in V(G), G has a spanning (u,v)-trail. A graph G is edge-Eulerian-connected if for any e and e in E(G), G has a spanning (e,e)-trail. For an integer r?0, a graph is called r-Eulerian-connected if for any XE(G) with |X|?r, and for any , G has a spanning (u,v)-trail T such that XE(T). The r-edge-Eulerian-connectivity of a graph can be defined similarly. Let θ(r) be the minimum value of k such that every k-edge-connected graph is r-Eulerian-connected. Catlin proved that θ(0)=4. We shall show that θ(r)=4 for 0?r?2, and θ(r)=r+1 for r?3. Results on r-edge-Eulerian connectivity are also discussed.  相似文献   

11.
Let Y be a subset of real numbers. A Y-dominating function of a graph G=(V,E) is a function f:VY such that for all vertices vV, where NG[v]={v}∪{u|(u,v)∈E}. Let for any subset S of V and let f(V) be the weight of f. The Y-domination problem is to find a Y-dominating function of minimum weight for a graph G=(V,E). In this paper, we study the variations of Y-domination such as {k}-domination, k-tuple domination, signed domination, and minus domination for some classes of graphs. We give formulas to compute the {k}-domination, k-tuple domination, signed domination, and minus domination numbers of paths, cycles, n-fans, n-wheels, n-pans, and n-suns. Besides, we present a unified approach to these four problems on strongly chordal graphs. Notice that trees, block graphs, interval graphs, and directed path graphs are subclasses of strongly chordal graphs. This paper also gives complexity results for the problems on doubly chordal graphs, dually chordal graphs, bipartite planar graphs, chordal bipartite graphs, and planar graphs.  相似文献   

12.
For a finite undirected graph G=(V,E) and positive integer k≥1, an edge set ME is a distance-k matching if the pairwise distance of edges in M is at least k in G. For k=1, this gives the usual notion of matching in graphs, and for general k≥1, distance-k matchings were called k-separated matchings by Stockmeyer and Vazirani. The special case k=2 has been studied under the names induced matching (i.e., a matching which forms an induced subgraph in G) by Cameron and strong matching by Golumbic and Laskar in various papers.Finding a maximum induced matching is NP-complete even on very restricted bipartite graphs and on claw-free graphs but it can be done efficiently on various classes of graphs such as chordal graphs, based on the fact that an induced matching in G corresponds to an independent vertex set in the square L(G)2 of the line graph L(G) of G which, by a result of Cameron, is chordal for any chordal graph G.We show that, unlike for k=2, for a chordal graph G, L(G)3 is not necessarily chordal, and finding a maximum distance-3 matching, and more generally, finding a maximum distance-(2k+1) matching for k≥1, remains NP-complete on chordal graphs. For strongly chordal graphs and interval graphs, however, the maximum distance-k matching problem can be solved in polynomial time for every k≥1. Moreover, we obtain various new results for maximum induced matchings on subclasses of claw-free graphs.  相似文献   

13.
Henry Liu  Yury Person   《Discrete Mathematics》2009,309(21):6277-6287
For integers , nk and rs, let m(n,r,s,k) be the largest (in order) k-connected component with at most s colours one can find in any r-colouring of the edges of the complete graph Kn on n vertices. Bollobás asked for the determination of m(n,r,s,k).Here, bounds are obtained in the cases s=1,2 and k=o(n), which extend results of Liu, Morris and Prince. Our techniques use Szemerédi’s Regularity Lemma for many colours.We shall also study a similar question for bipartite graphs.  相似文献   

14.
15.
Motivated by the pooling designs over the incidence matrices of matchings with various sizes of the complete graph K2n considered by Ngo and Du [Ngo and Du, Discrete Math. 243 (2003) 167–170], two families of pooling designs over the incidence matrices oft-cliques (resp. strongly t-cliques) with various sizes of the Johnson graph J(n,t) (resp. the Grassmann graph Jq(n,t)) are considered. Their performances as pooling designs are better than those given by Ngo and Du. Moreover, pooling designs associated with other special distance-regular graphs are also considered.  相似文献   

16.
Let M be an associated matrix of a graph G (the adjacency, Laplacian and signless Laplacian matrix). Two graphs are said to be cospectral with respect to M if they have the same M spectrum. A graph is said to be determined by M spectrum if there is no other non-isomorphic graph with the same spectrum with respect to M. It is shown that T-shape trees are determined by their Laplacian spectra. Moreover among them those are determined by their adjacency spectra are characterized. In this paper, we identify graphs which are cospectral to a given T-shape tree with respect to the signless Laplacian matrix. Subsequently, T-shape trees which are determined by their signless Laplacian spectra are identified.  相似文献   

17.
We investigate the time complexity of constructing single input double output state feedback controller structures, given the directed structure graph G of a system. Such a controller structure defines a restricted type of P3-partition of the graph G. A necessary condition (∗) is described and some classes of graphs are identified where the search problem of finding a feasible P3-partition is polynomially solvable and, in addition, (∗) is not only necessary but also sufficient for the existence of a P3-partition. It is also proved that the decision problem on two particular graph classes — defined in terms of forbidden subgraphs — remains NP-complete, but is polynomially solvable on the intersection of those two classes. The polynomial-time solvability of some further related problems is shown, too.  相似文献   

18.
We consider linearly ordered, Archimedean dimension groups (G,G+,u) for which the group G/u is torsion-free. It will be shown that if, in addition, G/u is generated by a single element (i.e., ), then (G,G+,u) is isomorphic to for some irrational number τ(0,1). This amounts to an extension of related results where dimension groups for which G/u is torsion were considered. We will prove, in the case of the Fibonacci dimension group, that these results can be used to directly construct an equivalence relation groupoid whose C*-algebra is the Fibonacci C*-algebra.  相似文献   

19.
A biclique B of a simple graph G is the edge-set of a complete bipartite subgraph of G. A biclique cover of G is a collection of bicliques covering the edge-set of G. Given a graph G, we will study the following problem: find the minimum number of bicliques which cover the edge-set of G. This problem will be called the minimum biclique cover problem (MBC). First, we will define the families of independent and dependent sets of the edge-set E(G) of G: FE(G) will be called independent if there exists a biclique BE(G) such that FB, and will be called dependent otherwise. From our study of minimal dependent sets we will derive a 0-1 linear programming formulation of the following problem: find the maximum weighted biclique in a graph. This formulation may have an exponential number of constraints with respect to the number of nodes of G but we will prove that the continuous relaxation of this integer program can be solved in polynomial time. Finally we will also study continuous relaxation methods for the problem (MBC). This research was motivated by an open problem of Fishburn and Hammer.  相似文献   

20.
We consider the complexity of the maximum (maximum weight) independent set problem within triangle graphs, i.e., graphs G satisfying the following triangle condition: for every maximal independent set I in G and every edge uv in GI, there is a vertex wI such that {u,v,w} is a triangle in G. We also introduce a new graph parameter (the upper independent neighborhood number) and the corresponding upper independent neighborhood set problem. We show that for triangle graphs the new parameter is equal to the independence number. We prove that the problems under consideration are NP-complete, even for some restricted subclasses of triangle graphs, and provide several polynomially solvable cases for these problems within triangle graphs. Furthermore, we show that, for general triangle graphs, the maximum independent set problem and the upper independent neighborhood set problem cannot be polynomially approximated within any fixed constant factor greater than one unless P=NP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号