首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The equation of static and dynamic caustics, and the formulae determining the position of crack tip and stress intensity factor are given. It is proven that for the case of low speed of crack propagation the static formula is applicable in calculation. A simple method to measure the static stress-optical constants is proposed. An Optical system which is suitable for the experiments of dynamic caustics was set-up and used to study the fracture in beam and rings with initial crack under impact loading. A series of dynamic caustics' photographs and curves showing the variations of corresponding crack lengths and dynamic stress intensity factors with time, are presented.  相似文献   

3.
In the first part of the paper, the computational model of boundary integral equation in solid mechanics is presented while in the second part the model is used in the solution of two problems of solid mechanics.  相似文献   

4.
基于弹性材料的动态基本方程,结合广义Betti-Rayleigh互易等式与时域下的边界积分方程,推导得到时域下的超奇异积分方程组。引入Laplace域下的动态基本解,将经过主部分析的积分核函数分解为静态和动态部分,其中动态积分核不具有奇异性。在裂纹前沿附近单元,采用与理论分析一致的平方根位移模型。结合Lubich时间卷积实现拉氏变换,采用配置点法计算超奇异积分,获得问题的数值解。并针对椭圆裂纹算例编写Fortran程序,得到冲击荷载作用下张开型裂纹的动态应力强度因子变化规律,数值结果稳定且收敛速度快。  相似文献   

5.
This note presents an analysis of the standard formulation of dynamic fracture mechanics problems. It is shown that this formulation does not correspond to the physics of such problems. S. P. Timoshenko Institute of Mechanics, National Academy of Sciences of Ukraine, Kiev, Ukraine. Translated from Prikladnaya Mekhanika, Vol. 35, No. 6, pp. 3–9, June, 1999.  相似文献   

6.
A method is described for determining the stresses in perforated cylindrical shells. The method is applicable to cases where several holes of arbitrary form are present. The problem is formulated as a system of four coupled integral equations together with a number of compatibility relations in integral form. A numerical procedure for solving the equations is also described and some simple applications of the method including the case of one elliptical hole with arbitrary orientation relative to the generators are presented.
Zusammenfassung Eine Methode zur Berechnung der Spannungen in zylindrischen Schalen mit Löchern willkürlicher Form wird beschrieben. Das Problem ist als ein System von vier gekuppelten Integralgleichungen mit einer Anzahl von Kompatibilitätsbedingungen auf Integralform formuliert. Ein numerisches Verfahren zur Lösung der Gleichungen ist beschrieben und auf einfache Rechnungsbeispiele angewandt, darunter der Fall, dass ein elliptisches Loch vorhanden ist, dessen Orientierung bezüglich der Erzeuger willkürlich ist.
  相似文献   

7.
The boundary and loading conditions in many dynamic fracture test methods are frequently not well defined and, therefore, introduce a degree of uncertainty in the modeling of the experiment to extract the dynamic fracture resistance for a rapidly propagating crack. A new dynamic fracture test method is presented that overcomes many of these difficulties. In this test, a precracked, three-point bend specimen is loaded by a transmitter bar that is impacted by a striker bar fired from a gas gun. Different levels of energy can be imparted to the specimen by varying the speed and length of the striker to induce different crack growth rates in the material. The specimen is instrumented with a crack ladder gage, crack-opening displacement gage and strain gages to develop requisite data to determine toughness. Typical data for AISI 4340 steel specimen are presented. A simple quasi-dynamic analysis model for deducing the fracture toughness for a running crack from these data is presented, and the results are compared with independent measurements.  相似文献   

8.
B. Budiansky 《Wave Motion》1979,1(3):187-191
By use of a steady state (e−iωt) dynamic elastic representation theorem for fields created by relative motions ΔUk on the faces of a crack, we reduce the problem of steady state response of an isolated three-dimensional planar crack, loaded by tractions on its surfaces, to an integral equation for ΔUk.  相似文献   

9.
10.
The elastodynamic problems of piezoelectric hollow cylinders and spheres under radial deformation can be transformed into a second kind Volterra integral equation about a function with respect to time, which greatly simplifies the solving procedure for such elastodynamic problems. Meanwhile, it becomes very important to find a way to solve the second kind Volterra integral equation effectively and quickly. By using an interpolation function to approximate the unknown function, two new recursive formulae were derived, based on which numerical solution can be obtained step by step. The present method can provide accurate numerical results efficiently. It is also very stable for long time calculating.  相似文献   

11.
Moscow. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, No. 2, pp. 118–123, March–April, 1994.  相似文献   

12.
A highly accurate method for simulating surfactant-covered droplets in two-dimensional Stokes flow with solid boundaries is presented. The method handles both periodic channel flows of arbitrary shape and stationary solid constrictions. A boundary integral method together with a special quadrature scheme is applied to solve the Stokes equations to high accuracy, also for closely interacting droplets. The problem is considered in a periodic setting and Ewald decompositions for the Stokeslet and stresslet are derived. Computations are accelerated using the spectral Ewald method. The time evolution is handled with a fourth-order, adaptive, implicit-explicit time-stepping scheme. The numerical method is tested through several convergence studies and other challenging examples and is shown to handle drops in close proximity both to other drops and solid objects to high accuracy.  相似文献   

13.
When the source nodes are on the global boundary in the implementation of local boundary integral equation method (LBIEM),singularities in the local boundary integrals need to be treated specially. In the current paper,local integral equations are adopted for the nodes inside the domain trod moving least square approximation (MLSA) for the nodes on the global boundary,thus singularities will not occur in the new al- gorithm.At the same time,approximation errors of boundary integrals are reduced significantly.As applications and numerical tests,Laplace equation and Helmholtz equa- tion problems are considered and excellent numerical results are obtained.Furthermore, when solving the Hehnholtz problems,the modified basis functions with wave solutions are adapted to replace the usually-used monomial basis functions.Numerical results show that this treatment is simple and effective and its application is promising in solutions for the wave propagation problem with high wave number.  相似文献   

14.
Fractal modeling of the rugged crack geometry is considered for the stable and dynamic fracture mechanics characterizing the morphology of a fracture surface and the influence of its growth. It is shown that the fractal dimension has a strong influence on the rising of the R-curve in brittle materials. For the unstable Griffith–Mott’s approach or dynamical crack growth the fractal dimension has a strong influence on the velocity limit of the crack growth. It is also shown that the limit of crack velocity lowers with increasing surface ruggedness (higher fractal dimension D = 2 − H) explaining the intangibility of the Rayleigh wave velocity by the cracks.  相似文献   

15.
A perturbation finite volume (PFV) method for the convective-diffusion integral equation is developed in this paper. The PFV scheme is an upwind and mixed scheme using any higher-order interpolation and second-order integration approximations, with the least nodes similar to the standard three-point schemes, that is, the number of the nodes needed is equal to unity plus the face-number of the control volume. For instance, in the two-dimensional (2-D) case, only four nodes for the triangle grids and five nodes for the Cartesian grids are utilized, respectively. The PFV scheme is applied on a number of 1-D linear and nonlinear problems, 2-D and 3-D flow model equations. Comparing with other standard three-point schemes, the PFV scheme has much smaller numerical diffusion than the first-order upwind scheme (UDS). Its numerical accuracies are also higher than the second-order central scheme (CDS), the power-law scheme (PLS) and QUICK scheme. The project supported by the National Natural Science Foundation of China (10272106, 10372106)  相似文献   

16.
17.
From basic assumptions of viscoelastic constitutive relations and weight residual techniques a Boundary Element procedure is achieved for both Kelvin and Boltzmann models. Imposing spatial approximations and adopting convenient kinematical relations for strain velocities, a system of time differential equations is achieved. This system is solved adopting linear approximations for displacements, resulting in a time marching methodology. This approach avoids the use of relaxation functions and makes easier changes in boundary conditions along time, natural or essential. An important feature of the resulting technique is the absence of domain discretizations, which simplify the treatment of problems involving infinite domains (tunnels and cavities inside the soil). Some examples are shown in order to demonstrate the accuracy and stability of the technique when compared to analytical solutions.  相似文献   

18.
A finite difference scheme for treating the static and dynamic stress fields under plane-strain conditions in the DCB, is proposed. The adequacy of the scheme is established via the static solution by comparing the results obtained numerically with those obtained experimentally. Both the numerical and experimental results are also compared with data available in the literature. Discrepancies found are explained and discussed. For the numerical scheme adjusted to handle the propagating crack problem, the results represent a situation which is close to that observed experimentally; namely, an essentially constant steady state crack propagation speed from the start, with crack length at arrest and velocity values depending on the initial conditions. In addition, the velocities predicted by the analysis are shown to be in good agreement with those reported in the literature.  相似文献   

19.
20.
A material force method is proposed for evaluating the energy release rate and work rate of dissipation for fracture in inelastic materials. The inelastic material response is characterized by an internal variable model with an explicitly defined free energy density and dissipation potential. Expressions for the global material and dissipation forces are obtained from a global balance of energy-momentum that incorporates dissipation from inelastic material behavior. It is shown that in the special case of steady-state growth, the global dissipation force equals the work rate of dissipation, and the global material force and J-integral methods are equivalent. For implementation in finite element computations, an equivalent domain expression of the global material force is developed from the weak form of the energy-momentum balance. The method is applied to model problems of cohesive fracture in a remote K-field for viscoelasticity and elastoplasticity. The viscoelastic problem is used to compare various element discretizations in combination with different schemes for computing strain gradients. For the elastoplastic problem, the effects of cohesive and bulk properties on the plastic dissipation are examined using calculations of the global dissipation force.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号