首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several silyl and alkaline metal substituted silylenes have been investigated using the CAS-ACPF method in conjunction with the aug-cc-pVTZ basis sets. Silylsilylene and disilylsilylene are found to have singlet ground states with DeltaEST(-) values of 0.676 and 0.319 eV, respectively. The adiabatic ground state electron affinities are found to be 1.572 and 2.361 eV for HSiSiH(3) and Si(SiH(3))(2). respectively. Both silylenes possesses a stable 2A1 excited negative ion state, with respective adiabatic EA values of 0.037 and 1.000 eV. In contrast, all silylenes with at least one akaline metal substituent exhibit triplet neutral ground states. The metalated silylenes HSiLi, HSiNa, LiSiSiH(3), NaSiLi, SiLi(2), and SiNa(2) have adiabatic ground state EAs somewhat below 1 eV, but each of these negatively charged system possesses up to three bound excited negative ion states, some of which are dipole-bound states.  相似文献   

2.
Anions that exhibit dipole-bound singlet states have been proposed as a potential class of molecules that may be identified in the interstellar medium. Using high-level coupled cluster theory, we have computed the dipole moments, electron binding energies, and excited states of 14 neutral radicals and their corresponding closed-shell anions. We have calibrated our methods against experimental data for CH(2)CN(-) and CH(2)CHO(-) and demonstrated that coupled cluster theory can closely reproduce experimental dipole moments, electron binding energies, and excitation energies. Using these same methods, we predict the existence of dipole-bound excited states for six of the 14 previously unknown anions, including CH(2)SiN(-), SiH(2)CN(-), CH(2)SiHO(-), SiN(-), CCOH(-), and HCCO(-). In addition, we predict the existence of a valence-bound excited state of CH(2)SiN(-) with an excitation wavelength near 589 nm.  相似文献   

3.
Equilibrium geometries of low-lying electronic states of cyanosilylene (HSiCN), isocyanosilylene (HSiNC), and their ions have been investigated using the complete active space self-consistent field (CASSCF) approach. The harmonic vibrational frequencies on the optimized geometries were calculated using the multiconfiguration linear response (MCLR) method. Taking the further correlation effects into account, the complete active space perturbation theory of second-order (CASPT2) was carried out for the energetic correction. The CASPT2 calculations have been performed to obtain the vertical excitation energies of selected low-lying excited states of HSiCN and HSiNC. Computed results show that the singlet-triplet splittings are calculated to be 0.99 and 1.30 eV for HSiCN and HSiNC, respectively. The vertical excitation energies of the lowest singlet and triplet excited states in HSiCN are lower than those in HSiNC. The first vertical ionization energy of HSiCN (10.04 eV) is higher than that of HSiNC (9.97 eV). The ground-state adiabatic electron affinities are found to be rather high, and the value of HSiCN (1.85 eV) higher than that of HSiNC (1.52 eV). The existences of dipole-bound excited negative ion states have been discovered within HSiCN and HSiNC.  相似文献   

4.
Results of experimental and theoretical studies of dipole-bound negative ions of the highly polar molecules ethylene carbonate (EC, C3H4O3, mu=5.35 D) and vinylene carbonate (VC, C3H2O3, mu=4.55 D) are presented. These negative ions are prepared in Rydberg electron transfer (RET) reactions in which rubidium (Rb) atoms, excited to ns or nd Rydberg states, collide with EC or VC molecules to produce EC- or VC- ions. In both cases ions are produced only when the Rb atoms are excited to states described by a relatively narrow range of effective principal quantum numbers, n*; the greatest yields of EC- and VC- are obtained for n*(max)=9.0+/-0.5 and 11.6+/-0.5, respectively. Charge transfer from low-lying Rydberg states of Rb is characteristic of a large excess electron binding energy (Eb) of the neutral parent; employing the previously derived empirical relationship Eb=23/n*(max)(2.8) eV, the electron binding energies are estimated to be 49+/-8 meV for EC and 24+/-3 meV for VC. Electron photodetachment studies of EC- show that the excess electron is bound by 49+/-5 meV, in excellent agreement with the RET results, lending credibility to the empirical relationship between Eb and n*(max). Vertical electron affinities for EC and VC are computed employing aug-cc-pVDZ atom-centered basis sets supplemented with a (5s5p) set of diffuse Gaussian primitives to support the dipole-bound electron; at the CCSD(T) level of theory the computed electron affinities are 40.9 and 20.1 meV for EC and VC, respectively.  相似文献   

5.
DFT methods have been used to investigate the dependence of the geometry and energy order of the low energy states of [d(4)-eta(5)-CpMo(CO)(2)X] 16-electron complexes on X (X = halogen, CN, H and CH(3)). The calculations use a double-zeta plus polarization valence basis set on all atoms and utilize relativistic ECPs on Mo and the heavier halogens. In every case two singlet and two triplet electronic states have been considered and minimized at the B3LYP level. For X = Cl, additional calculations were carried out at the BPW91, CCSD(T), and CASSCF levels. In the C(s) point group, the singlet states are from the (1a')(2)(1a')(2) and (1a')(2)(2a')(2) configurations of the valence d(4) electrons of the metal, and are denoted (1)A'-a and (1)A'-b, respectively. The triplet species are for the lowest (3)A' and (3)A' states from the (1a')(2)(2a')(1)(1a')(1) and (1a')(2)(1a')(1)(2a')(1) d(4) configurations. For all substituents, the geometry of both the singlet and triplet states is found to distort substantially from the uniform 3-leg piano-stool structural motif, a behavior that can be related to Jahn-Teller effects. When X is a halogen or a methyl, (1)A'-b is predicted to be lower than (1)A'-a, while the reverse order of these two singlet states is calculated for X = H and CN. For all substituents (3)A' is substantially higher than (3)A'. In turn, the energy of (3)A' is calculated to be comparable to the lower singlet state of each complex. Attempts are made to rationalize some of these results using qualitative MO theory.  相似文献   

6.
The formation of long-lived (tau less, similar10 mus) dipole-bound CH(3)CN(-) ions through electron transfer in K(14p)CH(3)CN collisions is investigated as a function of target temperature. The rate for their formation is observed to decrease steadily with increasing target temperature. The results are consistent with earlier suggestions that only target molecules in the ground vibrational state and low-lying rotational states can form long-lived dipole-bound anions. For CH(3)CN, the data indicate that creation of long-lived ions requires that the target molecules be in states with rotational quantum numbers j less, similar20. The measurements further demonstrate that the lifetime of the longest-lived (tau greater, similar50 mus) ions is limited by blackbody-radiation-induced photodetachment.  相似文献   

7.
Valence and dipole-bound negative ions of the nitroethane (NE) molecule and its clusters are studied using photoelectron spectroscopy (PES), Rydberg electron transfer (RET) techniques, and ab initio methods. Valence adiabatic electron affinities (EA(a)s) of NE, C(2)H(5)NO(2), and its clusters, (C(2)H(5)NO(2))(n), n=2-5, are estimated using vibrationally unresolved PES to be 0.3+/-0.2 eV (n=1), 0.9+/-0.2 eV (n=2), 1.5+/-0.2 eV (n=3), 1.9+/-0.2 eV (n=4), and 2.1+/-0.2 eV (n=5). These energies were then used to determine stepwise anion-neutral solvation energies and compared with previous literature values. Vertical detachment energies for (C(2)H(5)NO(2))(n)(-) were also measured to be 0.92+/-0.10 eV (n=1), 1.63+/-0.10 eV (n=2), 2.04+/-0.10 eV (n=3), and 2.3+/-0.1 eV (n=4). RET experiments show that Rydberg electrons can be attached to NE both as dipole-bound and valence bound anion states. The results are similar to those found for nitromethane (NM), where it was argued that the diffuse dipole state act as a "doorway state" to the more tightly bound valence anion. Using previous models for relating the maximum in the RET dependence of the Rydberg effective principle number n(max)(*), the dipole-bound electron affinity is predicted to be approximately 25 meV. However, a close examination of the RET cross section data for NE and a re-examination of such data for NM finds a much broader dependence on n(*) than is seen for RET in conventional dipole bound states and, more importantly, a pronounced [l] dependence is found in n(max)(*) (n(max)(*) increases with [l]). Ab initio calculations agree well with the experimental results apart from the vertical electron affinity value associated with the dipole bound state which is predicted to be 8 meV. Moreover, the calculations help to visualize the dramatic difference in the distributions of the excess electron for dipole-bound and valence states, and suggest that NE clusters form only anions where the excess electron localizes on a single monomer.  相似文献   

8.
Acetylene‐linked reactive intermediates of (nitrenoethynyl)‐X‐methylenes, (nitrenoethynyl)‐X‐silylenes, and (nitrenoethynyl)‐X‐germylenes are almost experimentally unreachable (X–M–C≡C–N; X=H ( 1 ), CN ( 2 ), OH ( 3 ), NH2 ( 4 ), NO2 ( 5 ), and CHO ( 6 ); M=C, Si, and Ge). The effects of the electron‐donating and electron withdrawing groups were compared and contrasted at seven levels of theory. All singlet species as ground states with one local open‐shell singlet carbene subunit (π1π1) and another local open‐shell singlet nitrene subunit (π1π1) were found to be more stable than their corresponding triplets including one local open‐shell singlet carbene (δ1π1) (or one local closed‐shell singlet carbene [δ2π0]) and another local triplet nitrene subunit (π1π1) with 45.94–77.996 kcal/mol singlet–triplet energy gap (ΔEs‐t). Their relative silylenes and germylenes made reduction of ΔEs‐t, so the triplet ground states were found for species 3 Si , 4 Si , 5 Si , 2 Ge , 3 Ge , 4 Ge , and 5 Ge . All the singlet silylenes/germylenes formed by one local closed‐shell singlet silylenes/germylenes (δ2π0) and one local closed‐shell singlet nitrene subunit (π2π0). Also, one local closed‐shell singlet silylene/germylene subunit (δ2π0) and one local triplet nitrene subunit (π1π1) were observed for triplet silylenes/germylenes. The singlet and triplet species 3 Si , 4 Si , 3 Ge , and 4 Ge , due to their electrophilic (Si4/Ge4) and nucleophilic (X5) centers, could be identified as intermediates in chemical reactions.  相似文献   

9.
Relaxation dynamics of photoexcited charge-transfer-to-solvent (CTTS) states for the I(-)(CH(3)CN)(n) (n = 2 and 3) clusters has been theoretically studied using electronic structure methods. First, we have calculated several lowest singlet and triplet potential energy surfaces using the multireference configuration interaction method. It was found that the character of the singlet CTTS excited-state potential surfaces is very similar to that of the triplet CTTS states. Due to a small singlet-triplet splitting, the lowest triplet potential energy surface was used as a good model to understand the dynamics of the photoexcited singlet CTTS states. We have carried out direct molecular dynamics simulations on the lowest triplet surface at the B3LYP level. When an I(-) anion is exteriorly solvated by CH(3)CN molecules, we found that the (CH(3)CN)(n)(-) anion cluster is effectively produced. In addition, when the I(-) anion is placed in the interior in I(-)(CH(3)CN)(n) clusters, photoexcitation gives an acetonitrile monomer anion plus neutral monomers. However, if the initial geometric configuration is distorted from the minimum structure, we also found that the (CH(3)CN)(2)(-) anion cluster, where an excess electron is internally trapped, is formed via I(-)(CH(3)CN)(2) + hnu --> I + (CH(3)CN)(2)(-) process.  相似文献   

10.
Anionic states of guanine, which is the only nucleic acid base of which the anions have not yet been studied in either photoelectron spectroscopic (PES) or Rydberg electron transfer (RET) experiments, have been characterized for the four most stable tautomers of neutral guanine using a broad spectrum of electronic structure methods from the density functional theory, with the B3LYP exchange-correlation functional, to the coupled-cluster method, with single, double, and perturbative triple excitations. Both valence and dipole-bound anionic states were addressed. We identified some of the difficulties facing future PES or RET experiments on the anion of guanine. Even if guanine is successfully transferred to the gas phase without thermal decomposition, it is critical to have the canonical amino-oxo (G) and both amino-hydroxy (GH and GHN7H) tautomers in the beam, not only the most stable, a noncanonical, amino-oxo tautomer (GN7H), as the latter does not support an adiabatically bound anionic state. We also suggested a scheme for enrichment of gas-phase guanine with the canonical tautomer, which is not the most stable in the gas phase, but which is of main interest due to its biological relevance. The tautomers G, GN7H, and GHN7H support vertically bound valence anionic states with the CCSD(T) value of vertical detachment energy of +0.58, +0.21, and +0.39 eV, respectively. These anionic states are, however, adiabatically unbound and thus metastable. The vertical electronic stability of these valence anionic states is accompanied by serious "buckling" of the molecular skeleton. The G and GHN7H tautomers support dipole-bound states with the CCSD(T) values of adiabatic electron affinity of 65 and 36 meV, respectively. A contribution from higher-than-second-order correlation terms represents, respectively, 48 and 68% of the total vertical electron detachment energy determined at the CCSD(T) level.  相似文献   

11.
In this study we report on the photophysical properties of some [RuL(CN)4](2-) complex ions where L = 2,2'-bipyridine (bpy), 5,5'-dimethyl-2,2'-bipyridine (dmb), 1,10-phenanthroline (phen), 1-ethyl-2-(2-pyridyl)benzimidazole (pbe), 2,2':6',2'-terpyridine (tpy) and [RuL3](2+) where L = bpy or phen. Measurements were carried out in H2O and D2O. The effect of the deuterium isotope effect on the lifetime of these complexes is discussed. It has also been found that the presence of cyano groups has a pronounced effect on the lifetime of the excited metal-to-ligand charge transfer ((3)MLCT) of these complexes. Quenching of the (3)MLCT states by oxygen is reported in H2O and D2O. The rate constants, k(q), for quenching of the (3)MLCT states of these ruthenium complex ions by molecular oxygen are in the range (2.55 to 7.01) x 10(9) M(-1) s(-1) in H2O and (3.38 to 5.69) x 10(9) M(-1) s(-1) in D2O. The efficiency of singlet oxygen, O2((1)Delta(g)), production as a result of the (3)MLCT quenching by oxygen, f(Delta)(T), is reported in D2O and found to be in the range 0.29-0.52. The rate constants, k(q)(Delta), for quenching of singlet oxygen by ground state sensitizers in D2O is also reported and found to be in the range (0.15 to 3.46) x 10(7) M(-1) s(-1). The rate constants and the efficiency of singlet oxygen formation are quantitatively reproduced by a model that assumes the competition of a non-charge transfer (nCT) and a CT deactivation channel. nCT deactivation occurs from a fully established spin-statistical equilibrium of (1)(T1(3)Sigma) and (3)(T1(3)Sigma) encounter complexes by internal conversion (IC) to lower excited complexes that dissociate to yield O2((1)Delta(g)), and O2((3)Sigmag-). The balance between CT and nCT deactivation channels which is described by the relative contribution p(CT) of CT induced deactivation is discussed. The kinetic model proposed for the quenching of pi-pi* triplet states by oxygen can also be applied to the quenching of (3)MLCT states by oxygen.  相似文献   

12.
Density functional theory and CASSCF calculations have been used to optimize the geometries of binuclear gold(I) complexes [H(3)PAu(C[triple bond]C)(n)AuPH(3)] (n=1-6) in their ground states and selected lowest energy (3)(pi pi*) excited states. Vertical excitation energies obtained by time-dependent density functional calculations for the spin-forbidden singlet-triplet transitions have exponential-decay size dependence. The predicted singlet-triplet splitting limit of [H(3)PAu(C[triple bond]C)(proportional/variant)AuPH(3)] is about 8317 cm(-1). Calculated singlet-triplet transition energies are in reasonable agreement with available experimental observations. The effect of the heavy atom Au spin-orbit coupling on the (3)(pi pi*) emission of these metal-capped one-dimensional carbon allotropes has been investigated by MRCI calculations. The contribution of the spin- and dipole-allowed singlet excited state to the spin-orbit-coupling wave function of the (3)(pi pi*) excited state makes the low-lying acetylenic triplet excited states become sufficiently allowed so as to appear in both electronic absorption and emission.  相似文献   

13.
The synthesis, dual fluorescence, and fluoroionophoric behavior of two donor-sigma spacer-acceptor (D-s-A) compounds, trans-4-(N,N-bis(2-pyridyl)amino)methylstilbene (1H) and trans-4-(N,N-bis(2-pyridyl)amino)methyl-4'-cyanostilbene (1CN), are reported and compared to that of trans-4-(N,N-bis(2-pyridyl)amino)methyl-4'-(N,N-dimethylamino)stilbene (1DPA). To gain insights into the dual fluorescence properties for 1H and 1CN in polar but not in nonpolar solvents, model compounds resulting from a replacement of the stilbene group by alkyl (2R) or xylyl (2X) groups or from a replacement of the dipyridylamino (dpa) group by dianisoleamino (3AA), diethylamino (3EE), methylanilino (3MP), or diphenylamino (3PP) groups also have been investigated. In addition to 1H and 1CN, all four compounds of 3 display dual fluorescence. The locally excited (LE) fluorescence mainly results from the stilbene group and the ICT fluorescence from the through-bond interactions between the amino donor and the stilbene acceptors. In the presence of transition metal ions such as Zn(II), Ni(II), Cu(II), and Cd(II), the ICT processes are switched from dpa (D) --> stilbene (A) in 1H and 1CN to stilbene (D) --> dpa/metal ion (A) in their complexes. Whereas the ICT states for the complexes are generally nonfluorescent, an exception was found for the case of 1H/Zn(II). As a result, substituent-dependent fluoroionophoric behavior has been demonstrated by 1H, 1CN, and 1DPA in response to Zn(II).  相似文献   

14.
Four ground state triplet silylenes are found among 30 possible silylenic XHSi3 structures (X = H, F, Cl and Br), at seven ab initio and DFT levels including: B3LYP/6-311++G∗∗, HF/6-311++G∗∗, MP3/6-311G, MP2/6-311+G∗∗, MP4(SDTQ)/6-311++G∗∗, QCISD(T)/6-311++G∗∗ and CCSD(T)/6-311++G∗∗. The latter six methods indicate that the triplet states of 3-flouro-1,2,3-trisilapropadienylidene, 1-chloro-1,2,3-trisilapropargylene and 3-chloro-1,2,3-trisilapropargylene are energy minima. These triplets appear more stable than their corresponding singlet states which cannot even exist for showing negative force constants. Also, triplet state of 1-flouro-1,2,3-trisilapropargylene is possibly accessible for being an energy minimum, since its corresponding singlet state is not a real isomer. Some discrepancies are observed between energetic and/or structural results of DFT vs. ab initio data.  相似文献   

15.
In this article, we have studied the bound anionic states of DNA and RNA nucleobases using the newly developed bt-PNO-EOM-CCSD method and extended basis sets. All of the five nucleobases have a single bound anionic state, which is dipole bound in nature. The electron affinity corresponding to the dipole-bound state is found to be extremely sensitive to the used basis set, and a proper agreement with the available experimental data requires a large basis set with a sufficient number of diffuse functions. Electron correlation plays a major role in stabilizing the bound anionic states of nucleobases. No valence-bound anionic states are observed for any of the nucleobases.  相似文献   

16.
The geometries and energies of the electronic states of phenyloxenium ion 1 (Ph-O(+)) were computed at the multireference CASPT2/pVTZ level of theory. Despite being isoelectronic to phenylnitrene 4, the phenyloxenium ion 1 has remarkably different energetic orderings of its electronic states. The closed-shell singlet configuration ((1)A(1)) is the ground state of the phenyloxenium ion 1, with a computed adiabatic energy gap of 22.1 kcal/mol to the lowest-energy triplet state ((3)A(2)). Open-shell singlet configurations ((1)A(2), (1)B(1), (1)B(2), 2(1)A(1)) are significantly higher in energy (>30 kcal/mol) than the closed-shell singlet configuration. These values suggest a revision to the current assignments of the ultraviolet photoelectron spectroscopy bands for the phenoxy radical to generate the phenyloxenium ion 1. For para-substituted phenyloxenium ions, the adiabatic singlet-triplet energy gap (ΔE(ST)) is found to have a positive linear free energy relationship with the Hammett-like σ(+)(R)/σ(+) substituent parameters; for meta substituents, the relationship is nonlinear and negatively correlated. CASPT2 analyses of the excited states of p-aminophenyloxenium ion 5 and p-cyanophenyloxenium ion 10 indicate that the relative orderings of the electronic states remain largely unperturbed for these para substitutions. In contrast, meta-donor-substituted phenyloxenium ions have low-energy open-shell states (open-shell singlet, triplet) due to stabilization of a π,π* diradical state by the donor substituent. However, all of the other phenyloxenium ions and larger aryloxenium ions (naphthyl, anthryl) included in this study have closed-shell singlet ground states. Consequently, ground-state reactions of phenyloxenium ions are anticipated to be more closely related to closed-shell singlet arylnitrenium ions (Ar-NH(+)) than their isoelectronic arylnitrene (Ar-N) counterparts.  相似文献   

17.
The spectroscopy and metastability of the carbon dioxide doubly charged ion, the CO(2) (2+) dication, have been studied with photoionization experiments: time-of-flight photoelectron photoelectron coincidence (TOF-PEPECO), threshold photoelectrons coincidence (TPEsCO), and threshold photoelectrons and ion coincidence (TPEsCO ion coincidence) spectroscopies. Vibrational structure is observed in TOF-PEPECO and TPEsCO spectra of the ground and first two excited states. The vibrational structure is dominated by the symmetric stretch except in the TPEsCO spectrum of the ground state where an antisymmetric stretch progression is observed. All three vibrational frequencies are deduced for the ground state and symmetric stretch and bending frequencies are deduced for the first two excited states. Some vibrational structure of higher electronic states is also observed. The threshold for double ionization of carbon dioxide is reported as 37.340+/-0.010 eV. The fragmentation of energy selected CO(2) (2+) ions has been investigated with TPEsCO ion coincidence spectroscopy. A band of metastable states from approximately 38.7 to approximately 41 eV above the ground state of neutral CO(2) has been observed in the experimental time window of approximately 0.1-2.3 mus with a tendency towards shorter lifetimes at higher energies. It is proposed that the metastability is due to slow spin forbidden conversion from bound excited singlet states to unbound continuum states of the triplet ground state. Another result of this investigation is the observation of CO(+)+O(+) formation in indirect dissociative double photoionization below the threshold for formation of CO(2) (2+). The threshold for CO(+)+O(+) formation is found to be 35.56+/-0.10 eV or lower, which is more than 2 eV lower than previous measurements.  相似文献   

18.
The nature and dynamics of the lowest excited states of fac-[Re(I)(L)(CO)(3)(phen)](+) and fac-[Re(I)(L)(CO)(3)(5-NO(2)-phen)](+) [L = Cl(-), 4-ethyl-pyridine (4-Etpy), imidazole (imH); phen = 1,10-phenanthroline] have been investigated by picosecond visible and IR transient absorption spectroscopy in aqueous (L = imH), acetonitrile (L = 4-Etpy, imH), and MeOH (L = imH) solutions. The phen complexes have long-lived Re(I) --> phen (3)MLCT excited states, characterized by CO stretching frequencies that are upshifted relative to their ground-state values and by widely split IR bands due to the out-of-phase A'(2) and A"nu(CO) vibrations. The lowest excited states of the 5-NO(2)-phen complexes also have (3)MLCT character; the larger upward nu(CO) shifts accord with much more extensive charge transfer from the Re(I)(CO)(3) unit to 5-NO(2)-phen in these states. Transient visible absorption spectra indicate that the excited electron is delocalized over the 5-NO(2)-phen ligand, which acquires radical anionic character. Similarly, involvement of the -NO(2) group in the Franck-Condon MLCT transition is manifested by the presence of an enhanced nu(NO(2)) band in the preresonance Raman spectrum of [Re(I)(4-Etpy)(CO)(3)(5-NO(2)-phen)](+). The Re(I) --> 5-NO(2)-phen (3)MLCT excited states are very short-lived: 7.6, 170, and 43 ps for L = Cl(-), 4-Etpy, and imH, respectively, in CH(3)CN solutions. The (3)MLCT excited state of [Re(I)(imH)(CO)(3)(5-NO(2)-phen)](+) is even shorter-lived in MeOH (15 ps) and H(2)O (1.3 ps). In addition to (3)MLCT, excitation of [Re(I)(imH)(CO)(3)(5-NO(2)-phen)](+) populates a (3)LLCT (imH --> 5-NO(2)-phen) excited state. Most of the (3)LLCT population decays to the ground state (time constants of 19 (H(2)O), 50 (MeOH), and 72 ps (CH(3)CN)); in a small fraction, however, deprotonation of the imH.+ ligand occurs, producing a long-lived species, [Re(I)(im.)(CO)(3)(5-NO(2)-phen).-]+.  相似文献   

19.
H-atom addition and abstraction processes involving ortho-, meta-, and para-benzyne have been investigated by multiconfigurational self-consistent field methods. The H(A) + H(B)...H(C) reaction (where r(BC) is adjusted to mimic the appropriate singlet-triplet energy gap) is shown to effectively model H-atom addition to benzyne. The doublet multiconfiguration wave functions are shown to mix the "singlet" and "triplet" valence bond structures of H(B)...H(C) along the reaction coordinate; however, the extent of mixing is dependent on the singlet-triplet energy gap (DeltaE(ST)) of the H(B)...H(C) diradical. Early in the reaction, the ground-state wave function is essentially the "singlet" VB function, yet it gains significant "triplet" VB character along the reaction coordinate that allows H(A)-H(B) bond formation. Conversely, the wave function of the first excited state is predominantly the "triplet" VB configuration early in the reaction coordinate, but gains "singlet" VB character when the H-atom is close to a radical center. As a result, the potential energy surface (PES) for H-atom addition to triplet H(B)...H(C) diradical is repulsive! The H3 model predicts, in agreement with the actual calculations on benzyne, that the singlet diradical electrons are not coupled strongly enough to give rise to an activation barrier associated with C-H bond formation. Moreover, this model predicts that the PES for H-atom addition to triplet benzyne will be characterized by a repulsive curve early in the reaction coordinate, followed by a potential avoided crossing with the (pi)1(sigma*)1 state of the phenyl radical. In contrast to H-atom addition, large activation barriers characterize the abstraction process in both the singlet ground state and first triplet state. In the ground state, this barrier results from the weakly avoided crossing of the dominant VB configurations in the ground-state singlet (S0) and first excited singlet (S1) because of the large energy gap between S0 and S1 early in the reaction coordinate. Because the S1 state is best described as the combination of the triplet X-H bond and the triplet H(B)...H(C) spin couplings, the activation barrier along the S0 abstraction PES will have much less dependence on the DeltaE(ST) of H(B)...H(C) than previously speculated. For similar reasons, the T1 potential surface is quite comparable to the S0 PES.  相似文献   

20.
Configuration interaction calculations of the ground and excited states of the H2CO molecule adsorbed on the Ag(111) surface have been carried out to study the photoinduced dissociation process leading to polymerization of formaldehyde. The metal-adsorbate system has been described by the embedded cluster and multireference configuration interaction methods. The pi electron-attachment H2CO- and n-pi* internally excited H2CO* states have been considered as possible intermediates. The calculations have shown that H2CO* is only very weakly bound on Ag(111), and thus that the dissociation of adsorbed formaldehyde due to internal excitation is unlikely. By contrast, the H2CO- anion is strongly bound to Ag(111) and gains additional vibrational energy along the C-O stretch coordinate via Franck-Condon excitation from the neutral molecule. Computed energy variations of adsorbed H2CO and H2CO- at different key geometries along the pathway for C-O bond cleavage make evident, however, that complete dissociation is very difficult to attain on the potential energy surface of either of these states. Instead, reneutralization of the vibrationally excited anion by electron transfer back to the substrate is the most promising means of breaking the C-O bond, with subsequent formation of the coadsorbed O and CH2 fragments. Furthermore, it has been demonstrated that the most stable state for both dissociation fragments on Ag(111) is a closed-shell singlet, with binding energies relative to the gas-phase products of approximately 3.2 and approximately 1.3 eV for O and CH2, respectively. Further details of the reaction mechanism for the photoinduced C-O bond cleavage of H2CO on the Ag(111) surface are also given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号