首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
The potential surfaces of the ground and lowest excited states of the [RuCl5NO]2? complex ion were studied by density functional theory. The conical intersections between the potential surfaces of the ground and lowest excited states were found and characterized. The possible routes from the conical intersection points to the ground state and metastable bond isomers were traced. A preliminary scheme, describing photoisomerizations in the complex, was suggested.  相似文献   

2.
Highly correlated ab initio methods have been used to generate one-dimensional cuts of the six-dimensional potential energy surfaces of the quartet and lowest doublet states for the HCCH(+) ion along the CH, CC, and cis and trans bending coordinates. Transition dipole moments and spin-orbit matrix elements are deduced. For the lowest 1 (4)Sigma(u) (+) state, the calculations predict a possible photon emission through the 1 (4)Pi(g)<--1 (4)Sigma(u) (+) transition competing with internal conversion and predissociation processes. The potential surfaces are used together with spin-orbit matrix elements to discuss the metastability and the predissociation processes forming the C(2)HC(2)H(+)+H(+)H products. Multistep spin-orbit induced predissociation pathways are suggested.  相似文献   

3.
The mechanisms including spin-inversion have been systematically studied for the M+ + OCS → MS+ + CO/MO+ + CS (M denotes a transition metal from Sc to Cu) ion-molecule reactions using the automated reaction path search method. We used the lowest mixed-spin potential energy surface obtained from the diagonalization of the spin-coupled Hamiltonian matrix, whose diagonal elements are taken to be the lowest two spin states. This scheme can effectively locate approximate minimum energy crossing points between the two potential energy surfaces with different spin multiplicities. The spin-orbit couplings at spin-inversion points have been calculated to understand the efficiencies of nonadiabatic transitions. The obtained reaction pathways and the calculated spin-orbit couplings are employed to interpret previous experimental studies.  相似文献   

4.
The adiabatic potential energy surfaces for the lowest five electronic states of (3)A" symmetry for the H(+)+O(2) collision system have been obtained at the multireference configuration interaction level of accuracy using Dunning's correlation consistent polarized valence triple zeta basis set. The radial nonadiabatic coupling terms and the mixing angle between the lowest two electronic states (1 (3)A" and 2 (3)A"), which adiabatically correlate in the asymptotic limit to H((2)S)+O(2) (+)(X (2)Pi(g)) and H(+)+O(2)(X (3)Sigma(g)(-)), respectively, have been computed using ab initio procedures at the same level of accuracy to yield the corresponding quasidiabatic potential energy matrix. The computed strengths of the vibrational coupling matrix elements reflect the trend observed for inelastic vibrational excitations of O(2) in the experiments at collision energy of 9.5 eV. The quantum dynamics has been preformed on the newly obtained coupled quasidiabatic potential energy surfaces under the vibrational close-coupling rotational infinite-order sudden framework at the experimental collision energy of 9.5 eV. The present theoretical results for vibrational elastic/inelastic excitations of O(2) are in overall good agreement with the available experimental data obtained from the proton energy-loss spectra in molecular beam experiments [F. A. Gianturco et al., J. Phys. B 14, 667 (1981)]. The results for the complementary charge transfer processes are also presented at this collision energy.  相似文献   

5.
Ab initio global adiabatic and quasidiabatic potential energy surfaces of lowest four electronic (1-4 (3)A(")) states of the H(+)+O(2) system have been computed in the Jacobi coordinates (R,r,γ) using Dunning's cc-pVTZ basis set at the internally contracted multireference (single and double) configuration interaction level of accuracy, which are relevant to the dynamics studies of inelastic vibrational and charge transfer processes observed in the scattering experiments. The computed equilibrium geometry parameters of the bound [HO(2)](+) ion in the ground electronic state and other parameters for the transition state for the isomerization process, HOO(+)?OOH(+) are in good quantitative agreement with those available from the high level ab initio calculations, thus lending credence to the accuracy of the potential energy surfaces. The nonadiabatic couplings between the electronic states have been analyzed in both the adiabatic and quasidiabatic frameworks by computing the nonadiabatic coupling matrix elements and the coupling potentials, respectively. It is inferred that the dynamics of energy transfer processes in the scattering experiments carried out in the range of 9.5-23 eV would involve all the four electronic states.  相似文献   

6.
Ab initio calculations on the H(+)+NO system have been carried out in Jacobi coordinates at the multireference configuration interaction level employing Dunning's correlation-consistent polarized valence triple zeta basis set to analyze the role of low-lying electronic excited states in influencing the collision dynamics relevant to the experimental collision energy range of 9.5-30 eV. The lowest two adiabatic potential energy surfaces, asymptotically correlating to H(+)+NO(X (2)Pi) and H((2)S)+NO(+)(X (1)Sigma(+)), have been obtained. Using ab initio procedures, the (radial) nonadiabatic couplings and the mixing angle between the lowest two electronic states (1 (2)A' and 2 (2)A') have been obtained to yield the corresponding quasidiabatic potential energy matrix. The strengths of the computed vibrational coupling matrix elements reflect a similar trend, as has been observed experimentally in the magnitudes of the state-to-state transition probability for the inelastic vibrational excitations [J. Krutein and F. Linder, J. Chem. Phys. 71, 559 (1979); F. A. Gianturco et al., J. Phys. B 14, 667 (1981)].  相似文献   

7.
A difference was observed in the reactivity of alcohols and ethers toward free electrons. Whereas the lowest core-excited state of the negative ion-a (2)(n,3s(2)) Feshbach resonance-of the alcohols readily dissociates by losing a hydrogen atom, ethers show no observable signal from this resonance. This difference in reactivity has a parallel in the anomalous shapes and energies of the parent states of the Feshbach resonances, the (1)(n,3s) Rydberg states of the neutral alcohols. We explained this anomaly using potential surfaces of the alcohols and ethers calculated using the TD-DFT method as a function of the dissociation coordinate. The lowest excited state of alcohols was found to be repulsive, whereas a barrier to dissociation was found in the ethers. Rydberg-valence mixing and avoided crossings are decisive in determining the shapes of the potential surfaces. It is concluded that the reactivities of alcohols and ethers toward free electrons are rationalized by assuming that the potential surfaces of the daughter Feshbach resonances closely follow those of the parent Rydberg states, i.e., the lowest Feshbach resonance is repulsive, but a barrier occurs in ethers. The potential surfaces of both the Rydberg states and the Feshbach resonances thus differ dramatically from the non-dissociative surface of the grandparent (2)(n(-1)) positive ions, despite the nominally non-bonding character of the Rydberg electrons.  相似文献   

8.
In this article, the influence of the tert‐butyl unit on the photodeactivation pathways of Pt[O^N^C^N] (O^N^C^N=2‐(4‐(3,5‐di‐tert‐butylphenyl)‐6‐(3‐(pyridin‐2‐l)phenyl) pyridin‐2‐yl)phenolate) is investigated by DFT/TDDFT calculations. To further explore the factors that determine the radiative processes, the transition dipole moments of the singlet excited states, spin–orbit coupling (SOC) matrix elements, and energy gaps between the lowest triplet excited states and singlet excited states are calculated. As demonstrated by the results, compared with Pt‐3 , Pt‐1 and Pt‐2 have larger SOC matrix elements between the lowest triplet excited states and singlet excited states, an indicator that they have faster radiative decay processes. In addition, the SOC matrix elements between the lowest triplet excited states and ground states are also computed to elucidate the temperature‐independent non‐radiative decay processes. Moreover, the temperature‐dependent non‐radiative decay mechanisms are also explored via the potential energy profiles.  相似文献   

9.
Global, three-dimensional multireference ab initio potential energy surfaces have been calculated for the AlH2+ system for the two lowest energy singlet states and the lowest energy triplet state. These surfaces were calculated using the multireference configuration interaction level of theory with a large basis set. The accuracy of the surfaces were checked against available experimental data and previous theoretical investigations. The areas of surface crossings between the ground state singlet surface and the lowest energy triplet surface and the first excited singlet surface have been thoroughly investigated in all three dimensions and found to give rise to two regions of surface crossings--an "early" crossing (reduced H2 distance) and a "late" crossing (enlarged H2 distance). It is anticipated that both of these crossings will be important in modeling the dynamics of the system. Each of the global potential energy surfaces were fit by interpolation methodology to obtain analytic representations of the surfaces. A representative classical simulation on the ground state singlet surface was performed and discussed.  相似文献   

10.
11.
A method is presented for constructing diabatic potential energy matrices from ab initio quantum chemistry data. The method is similar to that reported previously for single adiabatic potential energy surfaces, but correctly accounts for the nuclear permutation symmetry of diabatic potential energy matrices and other complications that arise from the derivative coupling of electronic states. The method is tested by comparison with an analytic model for the two lowest energy states of H(3).  相似文献   

12.
The three adiabatic potential surfaces of the Br(2P)-HCN complex that correlate to the 2P ground state of the Br atom were calculated ab initio. With the aid of a geometry-dependent diabatic mixing angle, also calculated ab initio, these adiabatic potential surfaces were transformed into a set of four diabatic potential surfaces required to define the full 3 x 3 matrix of diabatic potentials. Each of these diabatic potential surfaces was expanded in terms of the appropriate spherical harmonics in the atom-linear molecule Jacobi angle theta. The dependence of the expansion coefficients on the distance R between Br and the HCN center of mass and on the CH bond length was fit to an analytic form. For HCN in its equilibrium geometry, the global minimum with De = 800.4 cm(-1) and Re = 6.908a0 corresponds to a linear Br-NCH geometry, with an electronic ground state of Sigma symmetry. A local minimum with De = 415.1 cm-1, Re = 8.730a0, and a twofold degenerate Pi ground state is found for the linear Br-HCN geometry. The binding energy, De, depends strongly on the CH bond length for the Br-HCN complex and much less strongly for the Br-NCH complex, with a longer CH bond giving stronger binding for both complexes. Spin-orbit coupling was included and diabatic states were constructed that correlate to the ground 2P3/2 and excited 2P1/2 spin-orbit states of the Br atom. For the ground spin-orbit state with electronic angular momentum j = (3/2) the minimum in the potential for projection quantum number omega = +/-(3/2) coincides with the local minimum for linear Br-HCN of the spin-free case. The minimum in the potential for projection quantum number omega = +/-(1/2) occurs for linear Br-NCH but is considerably less deep than the global minimum of the spin-free case. According to the lowest spin-orbit coupling included adiabatic potential the two linear isomers, Br-NCH and Br-HCN, are about equally stable. In the subsequent paper, we use these potentials in calculations of the rovibronic states of the Br-HCN complex.  相似文献   

13.
Ab initio multireference configuration interaction potential energy surfaces are computed for the eight lowest singlet surfaces of C(3). These reveal several important features, including several conical intersections in linear, nonlinear, and equilateral triangle geometries. These intersections are important because, particularly for the excited A (1)Pi(u) state, reasonable ab initio results could only be obtained by including nearby, near degenerate, (1)Sigma(u) (-) and (1)Delta(u) states that cross the A (1)Pi(u) state around 4500 cm(-1) above the equilibrium geometry, and a (1)Pi(g) state whose potential in turn crosses the other states about 2000 cm(-1) further up. These states are probably responsible for the complexity of the shorter wavelength UV absorption spectrum of C(3). The computed potential energy surface for the ground, X (1)Sigma(g) (+), state and for the lowest two excited singlet surfaces (which both correlate with the A (1)Pi(u) state in a collinear geometry) are fitted to analytic functional forms. Vibrational energy levels are calculated for both states, taking account of the Renner-Teller coupling in the excited A (1)Pi(u) state. The potential parameters for both states are then least-squares fitted to experimental data. The ground-state fit covers a range of approximately 8500 cm(-1) above the lowest level, and reproduces 100 observed vibrational levels with an average error of 2.8 cm(-1). The A (1)Pi(u) state surfaces cover a range of 3250 cm(-1) above the zero-point level, and reproduce the 44 observed levels in this range with an average error of 2.8 cm(-1).  相似文献   

14.
The first absorption band of OCS (carbonyl sulfide) is analyzed using potential energy surfaces and transition dipole moment functions of the lowest four singlet and the lowest four triplet states. Excitation of the 2 (1)A' state is predominant except at very low photon energies. It is shown that the vibrational structures in the center of the band are due to excitation of the 2 (3)A' triplet state, whereas the structures at very low energies are caused by bending excitation in the potential wells of states 2 (1)A' and 1 (1)A'.  相似文献   

15.
The nonadiabatic nuclear wavepacket dynamics on the coupled two lowest (1)Σ(+) states of the LiF molecule under the action of a control pulse is investigated. The control is achieved by a modulation of the characteristics of the potential energy curves using an infrared field with a cycle duration comparable to the time scale of nuclear dynamics. The transition of population between the states is interpreted on the basis of the coupled nuclear wavepacket dynamics on the effective potential curves, which are transformed from the adiabatic potential curves with use of a diabatic representation that diagonalizes the dipole-moment matrix of the relevant electronic states. The basic feature of the transition dynamics is characterized in terms of the notion of the collision between the dynamical crossing point and nuclear wavepackets running on such modulated potential curves, and the transition amplitude is mainly dominated by the off-diagonal matrix element of the time-independent electronic Hamiltonian in the present diabatic representation. The importance of the geometry dependence of the intrinsic dipole moments as well as of the diabatic coupling potential is illustrated both theoretically and numerically.  相似文献   

16.
A simple model electronic Hamiltonian to describe the potential energy surfaces of several low-lying d-d states of the [Fe(bpy)(3)](2+) complex is developed for use in molecular dynamics (MD) simulation studies. On the basis of a method proposed previously for first-row transition metal ions in aqueous solution, the model Hamiltonian is constructed using density functional theory calculations for the lowest singlet and quintet states. MD simulations are then carried out for the two spin states in aqueous solution in order to examine the performance of the model Hamiltonian. The simulation results indicate that the present model electronic Hamiltonian reasonably describes the potential energy surfaces of the two spin states of the aqueous [Fe(bpy)(3)](2+) system, while retaining sufficient simplicity for application in simulation studies on excited state dynamics.  相似文献   

17.
The role of triplet states in the UV photodissociation of N(2)O is investigated by means of quantum mechanical wave packet calculations. Global potential energy surfaces are calculated for the lowest two (3)A' and the lowest two (3)A' states at the multi-reference configuration interaction level of electronic structure theory using the augmented valence quadruple zeta atomic basis set. Because of extremely small transition dipole moments with the ground electronic state, excitation of the triplet states has only a marginal effect on the far red tail of the absorption cross section. The calculations do not show any hint of an increased absorption around 280 nm as claimed by early experimental studies. The peak observed in several electron energy loss spectra at 5.4 eV is unambiguously attributed to the lowest triplet state 1(3)A'. Excitation of the 2(1)A' state and subsequent transition to the repulsive branch of the 2(3)A' state at intermediate NN-O separations, promoted by spin-orbit coupling, is identified as the main pathway to the N(2)((1)Σ(g)(+))+O((3)P) triplet channel. The yield, determined in two-state wave packet calculations employing calculated spin-orbit matrix elements, is 0.002 as compared to 0.005 ± 0.002 measured by Nishida et al. [J. Phys. Chem. A 108, 2451 (2004)].  相似文献   

18.
We present a model intended for rapid sampling of ground and excited state potential energy surfaces for first-row transition metal active sites. The method is computationally inexpensive and is suited for dynamics simulations where (1) adiabatic states are required "on-the-fly" and (2) the primary source of the electronic coupling between the diabatic states is the perturbative spin-orbit interaction among the 3d electrons. The model Hamiltonian we develop is a variant of the Anderson impurity model and achieves efficiency through a physically motivated basis set reduction based on the large value of the d-d Coulomb interaction U(d) and a Lanczos matrix diagonalization routine to solve for eigenvalues. The model parameters are constrained by fits to the partial density of states obtained from ab initio density functional theory calculations. For a particular application of our model we focus on electron transfer occurring between cobalt ions solvated by ammonium, incorporating configuration interaction between multiplet states for both metal ions. We demonstrate the capability of the method to efficiently calculate adiabatic potential energy surfaces and the electronic coupling factor we have calculated compares well to previous calculations and experiment. (  相似文献   

19.
20.
We have computed the vibrational spectrum of the helium ionized trimer He(3)(+) using three different potential energy surfaces [D. T. Chang and G. L. Gellene, J. Chem. Phys. 119, 4694 (2003); E. Scifoni et al., ibid. 125, 164304 (2006); I. Paidarova et al., Chem. Phys. 342, 64 (2007)]. Differences in the details of these potential energy surfaces induce discrepancies between bound state energies of the order of 0.01 eV. The effects of the geometric phase induced by the conical intersection between the ground electronic potential energy surface and the first excited one are studied by computing vibrational spectra with and without this phase. The six lowest vibrational bound states are negligibly affected by the geometric phase. Indeed, they correspond to wavefunctions localized in the vicinity of the linear symmetric configurations and can be assigned well defined vibrational quantum numbers. On the other hand, higher excited states are delocalized, cannot be assigned definite vibrational quantum numbers, and the geometric phase shifts their energies by approximately 0.005 eV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号