首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The photodetachment spectroscopy of B3- anion is theoretically studied with the aid of a quantum dynamical approach. The theoretical results are compared with the available experimental photoelectron spectra of B3-. Both B3- and B3 possess D(3h) symmetry at the equilibrium configuration of their electronic ground state. Distortion of B3 along its degenerate vibrational mode nu2 splits the degeneracy of its excited C2E' electronic manifold and exhibits (E [symbol: see text] e)-Jahn-Teller (JT) activity. The components of the JT split potential energy surface form conical intersections, and they can also undergo pseudo-Jahn-Teller (PJT) crossings with the X2A1' electronic ground state of B3 via the degenerate nu2 vibrational mode. The impact of the JT and PJT interactions on the nuclear dynamics of B3 in its X2A1'-C2E' electronic states is examined here by establishing a diabatic model Hamiltonian. The parameters of the electronic part of this Hamiltonian are calculated by performing electronic structure calculations and the nuclear dynamics on it is simulated by solving quantum eigenvalue equation. The theoretical results are in good accord with the experimental data.  相似文献   

2.
The complex vibronic spectra and the nonradiative decay dynamics of the cyclopropane radical cation (CP+) are simulated theoretically with the aid of a time-dependent wave packet propagation approach using the multireference time-dependent Hartree scheme. The theoretical results are compared with the experimental photoelectron spectrum of cyclopropane. The ground and first excited electronic states of CP+ are of X2E' and A2E' type, respectively. Each of these degenerate electronic states undergoes Jahn-Teller (JT) splitting when the radical cation is distorted along the degenerate vibrational modes of e' symmetry. The JT split components of these two electronic states can also undergo pseudo-Jahn-Teller (PJT)-type crossings via the vibrational modes of e', a1' and a2' symmetries. These lead to the possibility of multiple multidimensional conical intersections and highly nonadiabatic nuclear motions in these coupled manifolds of electronic states. In a previous publication [J. Phys. Chem. A 2004, 108, 2256], we investigated the JT interactions alone in the X2E' ground electronic manifold of CP+. In the present work, the JT interactions in the A2E' electronic manifold are treated, and our previous work is extended by considering the coupling between the X2E' and A2E' electronic states of CP+. The nuclear dynamics in this coupled manifold of two JT split doubly degenerate electronic states is simulated by considering fourteen active and most relevant vibrational degrees of freedom. The vibronic level spectra and the ultrafast nonradiative decay of the excited cationic states are examined and are related to the highly complex entanglement of electronic and nuclear degrees of freedom in this prototypical molecular system.  相似文献   

3.
The photoelectron spectrum of F2O pertaining to ionizations to the ground (X2B1) and low-lying excited electronic states (A2B2, B2A1, and C2A2) of F2O+ is investigated theoretically. The near equilibrium potential energy surfaces of the ground electronic state (X2B1) of F2O and the mentioned ground and excited electronic states of F2O+ reported by Wang et al. ( J. Chem. Phys. 2001, 114, 10682) for the C2v configuration are extended for the Cs geometry assuming a harmonic vibration along the asymmetric stretching mode. The vibronic interactions between the A2B2 and B2A1 electronic states of F2O+ are treated within a linear coupling approach, and the strength of the vibronic coupling parameter is calculated by an ab initio method. The nuclear dynamics is simulated by both time-independent quantum mechanical and time-dependent wave packet approaches. Although the first photoelectron band exhibits resolved vibrational progression along the symmetric stretching mode, the second one is highly overlapping. The latter is attributed to the nonadiabatic interactions among the energetically close A2B2, B2A1, and C2A2 electronic states of F2O+. The theoretical findings are in good accord with the available experimental results.  相似文献   

4.
A quantum dynamics study is performed to examine the complex nuclear motion underlying the first photoelectron band of methane. The broad and highly overlapping structures of the latter are found to originate from transitions to the ground electronic state, X(2)T(2), of the methane radical cation. Ab initio calculations have also been carried out to establish the potential energy surfaces for the triply degenerate electronic manifold of CH(4)(+). A suitable diabatic vibronic Hamiltonian has been devised and the nonadiabatic effects due to Jahn-Teller conical intersections on the vibronic dynamics investigated in detail. The theoretical results show fair accord with experiment.  相似文献   

5.
An ab initio quantum dynamical study is performed here to examine the complex nuclear motion underlying the first two photoelectron bands of trifluoroacetonitrile. The highly overlapping structures of the latter are found to originate from transitions to the five lowest electronic states (viz., X(2)E, A(2)A1, B(2)A2, C(2)A1, and D(2)E) of the trifluoroacetonitrile radical cation. The Jahn-Teller (JT) instability of the doubly degenerate X and, D and their pseudo-Jahn-Teller (PJT) interactions with the nondegenerate A, B, and C electronic states along the degenerate vibrational modes lead to multiple multidimensional conical intersections and complex nuclear trajectories through them. It is found that the JT splitting is very weak in the X and relatively stronger in the D state. However, the PJT couplings play the pivotal role in the detailed shape of the vibronic bands of the radical cation. Ultrafast nonradiative decay of electronically excited radical cation has been examined. The findings of this paper are compared with the experimental data and are also discussed in relation to those observed for the methyl cyanide radical cation.  相似文献   

6.
A theoretical study of the photoabsorption spectroscopy of hexafluorobenzene (HFBz) is presented in this paper. The chemical effect due to fluorine atom substitution on the electronic structure of benzene (Bz) saturates in HFBz. State- of-the-art quantum chemistry calculations are carried out to establish potential energy surfaces and coupling surfaces of five energetically low-lying electronic (two of them are orbitally degenerate) states of HFBz. Coupling of these electronic states caused by the Jahn-Teller (JT) and pseudo-Jahn-Teller (PJT) type of interactions are examined. The impact of these couplings on the nuclear dynamics of the participating electronic states is thoroughly investigated by quantum mechanical methods and the results are compared with those observed in the experiments. The complex structure of the S(1) ← S(0) absorption band is found to originate from a very strong nonadiabatic coupling of the S(2) (of πσ* origin) and S(1) (of ππ* origin) state. While S(2) state is orbitally degenerate and JT active, the S(1) state is nondegenerate. These states form energetically low-lying conical intersections (CIs) in HFBz. These CIs are found to be the mechanistic bottleneck of the observed low quantum yield of fluorescence emission, non overlapping absorption, and emission bands of HFBz and contribute to the spectral width. Justification is also provided for the observed two peaks in the second absorption (the unassigned "c band") band of HFBz. The peaks observed in the third, fourth, and fifth absorption bands are also identified and assigned.  相似文献   

7.
The photoinduced hydrogen elimination reaction in phenol via the conical intersections of the dissociative 1pi sigma* state with the 1pi pi* state and the electronic ground state has been investigated by time-dependent quantum wave-packet calculations. A model including three intersecting electronic potential-energy surfaces (S0, 1pi sigma*, and 1pi pi*) and two nuclear degrees of freedom (OH stretching and OH torsion) has been constructed on the basis of accurate ab initio multireference electronic-structure data. The electronic population transfer processes at the conical intersections, the branching ratio between the two dissociation channels, and their dependence on the initial vibrational levels have been investigated by photoexciting phenol from different vibrational levels of its ground electronic state. The nonadiabatic transitions between the excited states and the ground state occur on a time scale of a few tens of femtoseconds if the 1pi pi*-1pi sigma* conical intersection is directly accessible, which requires the excitation of at least one quantum of the OH stretching mode in the 1pi pi* state. It is shown that the node structure, which is imposed on the nuclear wave packet by the initial preparation as well as by the transition through the first conical intersection (1pi pi*-1pi sigma*), has a profound effect on the nonadiabatic dynamics at the second conical intersection (1pi sigma*-S0). These findings suggest that laser control of the photodissociation of phenol via IR mode-specific excitation of vibrational levels in the electronic ground state should be possible.  相似文献   

8.
The effect of vibronic coupling on structure and spectroscopy is investigated in the excited cationic states of ethylene. It is found from equation of motion coupled cluster singles and doubles method for ionization potential electronic structure calculations in a triple-zeta plus double polarization basis set that ethylene in its third (B (2)A(g)) and fourth (C (2)B(2u)) ionized states does not have a stable minimum-energy geometry. The potential-energy surfaces of these states are energetically distinct and well separated at the ground-state geometry of ethylene, but in a geometry optimization as the structure of the ion relaxes, these surfaces end up in conical intersections and finally in the stable equilibrium geometry of the second ionized state (A (2)B(3g)). The topology of the potential-energy surfaces can be clearly understood using a vibronic model Hamiltonian. Furthermore, by diagonalizing this model Hamiltonian, the photoelectron spectrum of ethylene corresponding to the second, third, and fourth ionized states (12-18 eV) is simulated. Spectra from vibronic simulations including up to quartic coupling constants and using various normal-mode basis sets are compared to those from vertical Franck-Condon simulations to understand the importance of vibronic coupling and nonadiabatic effects and to examine the influence of individual normal modes on the spectrum.  相似文献   

9.
The ultrafast dynamics of UV-excited imidazole in the gas phase is investigated by theoretical nonadiabatic dynamics simulations and experimental time-resolved photoelectron spectroscopy. The results show that different electronic excited-state relaxation mechanisms occur, depending on the pump wavelength. When imidazole is excited at 239.6 nm, deactivation through the NH-dissociation conical intersection is observed on the sub-50 fs timescale. After 200.8 nm excitation, competition between NH-dissociation and NH-puckering conical intersections is observed. The NH-dissociation to NH-puckering branching ratio is predicted to be 21:4, and the total relaxation time is elongated by a factor of eight. A procedure for simulation of photoelectron spectra based on dynamics results is developed and employed to assign different features in the experimental spectra.  相似文献   

10.
A new imaging technique, reflectron multimass velocity map ion imaging, is used to study the vibrationally mediated photodissociation dynamics in the ethylene cation. The cation ground electronic state is prepared in specific vibrational levels by two-photon resonant, three-photon ionization via vibronic bands of (pi, nf) Rydberg states in the vicinity of the ionization potential of ethylene, then photodissociated through the (B 2A(g)) excited state. We simultaneously record spatially resolved images of parent C2H4+ ions as well as photofragment C2H3+ and C2H2+ ions originating in dissociation from the vibronic excitations in two distinct bands, 7f 4(0)2 and 8f 0(0)0, at roughly the same total energy. By analyzing the images, we directly obtain the total translation energy distributions for the two dissociation channels and the branching between them. The results show that there exist differences for competitive dissociation pathways between H and H2 elimination from C2H4+ depending on the vibronic preparation used, i.e., on the vibrational excitation in the ground state of the cation prior to photodissociation. Our findings are discussed in terms of the possible influence of the torsional excitation on competition between direct dissociation, isomerization, and radiationless transitions through conical intersections among the numerous electronic states that participate in the dissociation.  相似文献   

11.
H(D) Rydberg atom photofragment translational spectroscopy has been used to investigate the dynamics of H(D) atom loss C6H5SH(C6H5SD) following excitation at many wavelengths lambda phot in the range of 225-290 nm. The C6H5S cofragments are formed in both their ground (X(2)B1) and first excited ((2)B2) electronic states, in a distribution of vibrational levels that spreads and shifts to higher internal energies as lambda(phot) is reduced. Excitation at lambda(phot) > 275 nm populates levels of the first (1)pi pi* state, which decay by tunnelling to the dissociative (1)pi sigma* state potential energy surface (PES). S-H torsional motion is identified as a coupling mode facilitating population transfer at the conical intersection (CI) between the diabatic (1)pi pi* and (1)pi sigma* PESs. At shorter lambda(phot), the (1)pi sigma* state is deduced to be populated either directly or by efficient vibronic coupling from higher (1)pipi* states. Flux evolving on the (1)pi sigma* PES samples a second CI, at longer R(S-H), between the diabatic (1)pi sigma* and ground ((1)pi pi) PESs, where the electronic branching between ground and excited state C6H5S fragments is determined. The C6H5S(X(2)B1) and C6H5S((2)B2) products are deduced to be formed in levels with, respectively, a' and a' vibrational symmetry-behavior that reflects both Franck-Condon effects (both in the initial photoexcitation step and in the subsequent in-plane forces acting during dissociation) and the effects of the out-of-plane coupling mode(s), nu11 and nu16a, at the (1)pi sigma*/(1)pi pi CI. The vibrational state assignments enabled by the high-energy resolution of the present data allow new and improved estimations of the bond dissociation energies, D0(C6H5S-H) < or = 28,030 +/- 100 cm(-1) and D0(C6H5S-D) < or = 28,610 +/- 100 cm(-1), and of the energy separation between the X(2)B1 and (2)B2 states of the C6H5S radical, T(00) = 2800 +/- 40 cm(-1). Similarities, and differences, between the measured energy disposals accompanying UV photoinduced X-H (X = S, O) bond fission in thiophenol and phenol are discussed.  相似文献   

12.
The kinetic energy release distributions (KERDs) for the fluorine atom loss from the 1,1-difluoroethene cation have been recorded with two spectrometers in two different energy ranges. A first experiment uses dissociative photoionization with the He(I) and Ne(I) resonance lines, providing the ions with a broad internal energy range, up to 7 eV above the dissociation threshold. The second experiment samples the metastable range, and the average ion internal energy is limited to about 0.2 eV above the threshold. In both energy domains, KERDs are found to be bimodal. Each component has been analyzed by the maximum entropy method. The narrow, low kinetic energy components display for both experiments the characteristics of a statistical, simple bond cleavage reaction: constraint equal to the square root of the fragment kinetic energy and ergodicity index higher than 90%. Furthermore, this component is satisfactorily accounted for in the metastable time scale by the orbiting transition state theory. Potential energy surfaces corresponding to the five lowest electronic states of the dissociating 1,1-C2H2F2+ ion have been investigated by ab initio calculations at various levels. The equilibrium geometry of these states, their dissociation energies, and their vibrational wavenumbers have been calculated, and a few conical intersections between these surfaces have been identified. It comes out that the ionic ground state X2B1 is adiabatically correlated with the lowest dissociation asymptote. Its potential energy curve increases in a monotonic way along the reaction coordinate, giving rise to the narrow KERD component. Two states embedded in the third photoelectron band (B2A1 at 15.95 eV and C2B2 at 16.17 eV) also correlate with the lowest asymptote at 14.24 eV. We suggest that their repulsive behavior along the reaction coordinate be responsible for the KERD high kinetic energy contribution.  相似文献   

13.
The photoinduced hydrogen elimination reaction in thiophenol via the conical intersections of the dissociative (1)πσ? excited state with the bound (1)ππ? excited state and the electronic ground state has been investigated with ab initio electronic-structure calculations and time-dependent quantum wave-packet calculations. A screening of the coupling constants of the symmetry-allowed coupling modes at the (1)ππ?-(1)πσ? and (1)πσ?-S(0) conical intersection shows that the SH torsional mode is by far the most important coupling mode at both conical intersections. A model including three intersecting potential-energy surfaces (S(0), (1)ππ?, (1)πσ?) and two nuclear degrees of freedom (SH stretch and SH torsion) has been constructed on the basis of ab initio complete-active-space self-consistent field and multireference second-order perturbation theory calculations. The nonadiabatic quantum wave-packet dynamics initiated by optical excitation of the (1)ππ? and (1)πσ? states has been explored for this three-state two-coordinate model. The photodissociation dynamics is characterized in terms of snapshots of time-dependent wave packets, time-dependent electronic population probabilities, and the branching ratio of the (2)σ/(2)π electronic states of the thiophenoxyl radical. The dependence of the timescale of the photodissociation process and the branching ratio on the initial excitation of the SH stretching and SH torsional vibrations has been analyzed. It is shown that the node structure, which is imposed on the nuclear wave packets by the initial vibrational preparation as well as by the transitions through the conical intersections, has a profound effect on the photodissociation dynamics. The effect of additional weak coupling modes of CC twist (ν(16a)) and ring-distortion (ν(16b)) character has been investigated with three-dimensional and four-dimensional time-dependent wave-packet calculations, and has been found to be minor.  相似文献   

14.
A photoelectron spectrum of H(2)O has been recorded at a resolution of 2 meV under Doppler-free conditions. Complex rotational structures appear in the individual vibrational states of the electronic X?(+ 2)B(1) and A?(+ 2)A(2) states in H(2)O(+). The rotational structures are analyzed and well reproduced using a spectator orbital model developed for rotationally resolved photoelectron spectroscopy.  相似文献   

15.
The excitation spectra and molecular dynamics of furan associated with its low-lying excited singlet states 1A2(3s), 1B2(V), 1A1(V'), and 1B1(3p) are investigated using an ab initio quantum-dynamical approach. The ab initio results of our previous work [J. Chem. Phys. 119, 737 (2003)] on the potential energy surfaces (PES) of these states indicate that they are vibronically coupled with each other and subject to conical intersections. This should give rise to complex nonadiabatic nuclear dynamics. In the present work the dynamical problem is treated using adequate vibronic coupling models accounting for up to four coupled PES and thirteen vibrational degrees of freedom. The calculations were performed using the multiconfiguration time-dependent Hartree method for wave-packet propagation. It is found that in the low-energy region the nuclear dynamics of furan is governed mainly by vibronic coupling of the 1A2(3s) and 1B2(V) states, involving also the 1A1(V') state. These interactions are responsible for the ultrafast internal conversion from the 1B2(V) state, characterized by a transfer of the electronic population to the 1A2(3s) state on a time scale of approximately 25 fs. The calculated photoabsorption spectrum of furan is in good qualitative agreement with experimental data. Some assignments of the measured spectrum are proposed.  相似文献   

16.
The static and dynamic aspects of the Jahn-Teller (JT) interactions in the 3p(E') and 3d(E") Rydberg electronic states of H3 are analyzed theoretically. The static aspects are discussed based on recent ab initio quantum chemistry results, and the dynamic aspects are examined in terms of the vibronic spectra and nonradiative decay behavior of these states. The adiabatic potential-energy surfaces of these degenerate electronic states are derived from extensive ab initio calculations. The calculated adiabatic potential-energy surfaces are diabatized following our earlier study on this system in its 2p(E') ground electronic state. The nuclear dynamics on the resulting conically intersecting manifold of electronic states is studied by a time-dependent wave-packet approach. Calculations are performed both for the uncoupled and coupled state situations in order to understand the importance of nonadiabatic interactions due to the JT conical intersections in these excited Rydberg electronic states.  相似文献   

17.
Reaction mechanisms of the ultrafast photoisomerization between cyclohexadiene and hexatriene have been elucidated by the quantum dynamics on the ab initio potential energy surfaces calculated by multireference configuration interaction method. In addition to the quantum wave-packet dynamics along the two-dimensional reaction coordinates, the semiclassical analyses have also been carried out to correctly estimate the nonadiabatic transition probabilities around conical intersections in the full-dimensional space. The reaction time durations of radiationless decays in the wave-packet dynamics are found to be generally consistent with the femtosecond time-resolution experimental observations. The nonadiabatic transition probabilities among the ground (S0), first (S1), and second (S2) excited states have been estimated by using the semiclassical Zhu-Nakamura formula considering the full-dimensional wave-packet density distributions in the vicinity of conical intersections under the harmonic normal mode approximation. The cyclohexadiene (CHD) ring-opening process proceeds descending on the S1(1 1B) potential after the photoexcitation. The major part of the wave-packet decays from S1(1 1B) to S1(2 1A) by the first seam line crossing along the C2-symmetry-breaking directions. The experimentally observed ultrafast S1-S0 decay can be explained by the dynamics through the S1-S0 conical intersection along the direction toward the five-membered ring. The CHD: hexatriene (HT) branching ratio is estimated to be approximately 5:5, which is in accordance with the experiment in solution. This branching ratio is found to be mainly governed by the location of the five-membered ring S1-S0 conical intersection along the ground state potential ridge between CHD and HT.  相似文献   

18.
Vacuum ultraviolet pulsed-field ionization-photoelectron (PFI-PE) spectra of H(2)S have been recorded at PFI-PE resolutions of 0.6-1.0 meV in the energy range of 10-17 eV using high-resolution synchrotron radiation. The PFI-PE spectrum, which covers the formation of the valence electronic states H(2)S(+) (X (2)B(1), A (2)A(1), and B (2)B(2)), is compared to the recent high-resolution He I photoelectron spectra of H(2)S obtained by Baltzer et al. [Chem. Phys. 195, 403 (1995)]. In addition to the overwhelmingly dominated origin vibrational band, the PFI-PE spectrum for H(2)S(+)(X (2)B(1)) is found to exhibit weak vibrational progressions due to excitation of the combination bands in the nu(1) (+) symmetric stretching and nu(2) (+) bending modes. While the ionization energy (IE) for H(2)S(+)(X (2)B(1)) obtained here is in accord with values determined in previously laser PFI-PE measurements, the observation of a new PFI-PE band at 12.642+/-0.001 eV suggests that the IE for H(2)S(+)(A (2)A(1)) may be 0.12 eV lower than that reported in the He I study. The simulation of rotational structures resolved in PFI-PE bands shows that the formation of H(2)S(+)(X (2)B(1)) and H(2)S(+)(A (2)A(1)) from photoionization of H(2)S(X (1)A(1)) is dominated by type-C and type-B transitions, respectively. This observation is consistent with predictions of the multichannel quantum defect theory. The small changes in rotational angular momentum observed are consistent with the dominant atomiclike character of the 2b(1) and 5a(1) molecular orbitals of H(2)S. The PFI-PE measurement has revealed perturbations of the (0, 6, 0) K(+)=3 and (0, 6, 0) K(+)=4 bands of H(2)S(+)(A (2)A(1)). Interpreting that these perturbations arise from Renner-Teller interactions at energies close to the common barriers to linearity of the H(2)S(+) (X (2)B(1) and A (2)A(1)) states, we have deduced a barrier of 23,209 cm(-1) for H(2)S(+)(X (2)B(1)) and 5668 cm(-1) for H(2)S(+)(A (2)A(1)). The barrier of 23 209 cm(-1) for H(2)S(+)(X (2)B(1)) is found to be in excellent agreement with the results of previous studies. The vibrational PFI-PE bands for H(2)S(+)(B (2)B(2)) are broad, indicative of the predissociative nature of this state.  相似文献   

19.
Rotationally resolved spectra of the B(2)Π - X(2)Π 0(0)(0) electronic origin bands and 11(1)(1) μ(2)Σ-μ(2)Σ vibronic hot band transitions of both C(6)H and C(6)D have been recorded in direct absorption by cavity ring-down spectroscopy through a supersonically expanding planar plasma. For both origin and hot bands accurate spectroscopic parameters are derived from a precise rotational analysis. The origin band measurements extend earlier work and the 11(1)(1) μ(2)Σ-μ(2)Σ vibronic hot bands are discussed here for the first time. The Renner-Teller effect for the lowest bending mode ν(11) is analyzed, yielding the Renner parameters ε(11), vibrational frequencies ω(11), and the true spin-orbit coupling constants A(SO) for both (2)Π electronic states. From the Renner-Teller analysis and spectral intensity measurements as a function of plasma jet temperature, the excitation energy of the lowest-lying 11(1) μ(2)Σ vibronic state of C(6)H is determined to be (11.0 ± 0.8) cm(-1).  相似文献   

20.
Quantum dynamical simulations of vibrational spectroscopy have been carried out for glycine dipeptide (CH(3)-CO-NH-CH(2)-CO-NH-CH(3)). Conformational structure and dynamics are modeled in terms of the two Ramachandran dihedral angles of the molecular backbone. Potential energy surfaces and harmonic frequencies are obtained from electronic structure calculations at the density functional theory (DFT) [B3LYP/6-31+G(d)] level. The ordering of the energetically most stable isomers (C(7) and C(5)) is reversed upon inclusion of the quantum mechanical zero point vibrational energy. Vibrational spectra of various isomers show distinct differences, mainly in the region of the amide modes, thereby relating conformational structures and vibrational spectra. Conformational dynamics is modeled by propagation of quantum mechanical wave packets. Assuming a directed energy transfer to the torsional degrees of freedom, transitions between the C(7) and C(5) minimum energy structures occur on a sub-picosecond time scale (700...800 fs). Vibrationally nonadiabatic effects are investigated for the case of the coupled, fundamentally excited amide I states. Using a two state-two mode model, the resulting wave packet dynamics is found to be strongly nonadiabatic due to the presence of a seam of the two potential energy surfaces. Initially prepared adiabatic vibrational states decay upon conformational change on a time scale of 200...500 fs with population transfer of more than 50% between the coupled amide I states. Also the vibrational energy transport between localized (excitonic) amide I vibrational states is strongly influenced by torsional dynamics of the molecular backbone where both enhanced and reduced decay rates are found. All these observations should allow the detection of conformational changes by means of time-dependent vibrational spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号