首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ghanem  R.  Dham  S. 《Transport in Porous Media》1998,32(3):239-262
This study is concerned with developing a two-dimensional multiphase model that simulates the movement of NAPL in heterogeneous aquifers. Heterogeneity is dealt with in a probabilistic sense by modeling the intrinsic permeability of the porous medium as a stochastic process. The deterministic finite element method is used to spatially discretize the multiphase flow equations. The intrinsic permeability is represented in the model via its Karhunen–Loeve expansion. This is a computationally expedient representation of stochastic processes by means of a discrete set of random variables. Further, the nodal unknowns, water phase saturations and water phase pressures, are represented by their stochastic spectral expansions. This representation involves an orthogonal basis in the space of random variables. The basis consists of orthogonal polynomial chaoses of consecutive orders. The relative permeabilities of water and oil phases, and the capillary pressure are expanded in the same manner, as well. For these variables, the set of deterministic coefficients multiplying the basis in their expansions is evaluated based on constitutive relationships expressing the relative permeabilities and the capillary pressure as functions of the water phase saturations. The implementation of the various expansions into the multiphase flow equations results in the formulation of discretized stochastic differential equations that can be solved for the deterministic coefficients appearing in the expansions representing the unknowns. This method allows the computation of the probability distribution functions of the unknowns for any point in the spatial domain of the problem at any instant in time. The spectral formulation of the stochastic finite element method used herein has received wide acceptance as a comprehensive framework for problems involving random media. This paper provides the application of this formalism to the problem of two-phase flow in a random porous medium.  相似文献   

2.
This paper investigates a kind of binary function projective lag synchronization of uncertain chaotic systems with stochastic perturbation. In comparison with those of the existing scaling function synchronization, we assume that the given scaling function can be the binary boundary function, even an n-ary boundary function. Based on the LaSalle-type invariance principle for stochastic differential equation, the adaptive control law is derived to make the state of two chaotic systems function projective lag synchronized. Some numerical is also given to show the effectiveness of the proposed method.  相似文献   

3.
Groundwater contamination of organics has recently become a problem of growing concern over the resulting health and environmental problems. In general, the multiphase system of nonaqueous phase liquid (NAPL), water and air has to be studied in order to realistically describe the movement of such materials in the subsurface. Numerous models have been developed to study multiphase flow and/or multispecies transport in porous media. However, using models to study the influence of medium heterogeneity on such flow and transport is only a recent event. It has been demonstrated for single-phase flow and transport in saturated and unsaturated media that the study of medium heterogeneity is amenable to stochastic analysis. In this paper, we extend our Eulerian–Lagrangian stochastic theory for single-phase transport to the problem of multiphase–multispecies transport in randomly heterogeneous media under the conditions that the flow is steady-state and the phases are in local chemical equilibrium. We present theoretical expressions to describe the first two conditional moments of the random concentration of any species in any phase. Though they reveal some of the fundamental properties and help gaining insight into the nature of the problem, these expressions cannot be evaluated without either high resolution Monte Carlo simulation or approximation (closure). Therefore, we propose two sets of workable approximations, one being a weak approximation and the other being a linearized pseudo-Fickian approximation. The former yields a nonlinear integro-differential equation for the first conditional moment and the latter yields a linear differential equation. Then the second moments can be computed from explicit expressions from either the weak or pseudo-Fickian approximation.  相似文献   

4.
LES of the Cambridge Stratified Swirl Burner using a Sub-grid pdf Approach   总被引:1,自引:0,他引:1  
The sub-grid scale probability density function equation is rearranged in order to separate the resolved and sub-grid-scale (sgs) contributions to the sgs mixing term. This allows modelling that is consistent with the limiting case of negligible sub-grid scale variations, a property required for applications to laboratory premixed flames. The new method is applied to the Cambridge Stratified Swirl Burner for 6 operating conditions, 2 isothermal and 4 burning, with varying degrees of swirl and mixture stratification. The simulations are performed with the Large Eddy Simulation (LES) code BOFFIN in which the modelled pdf transport equation is solved using the Eulerian stochastic field method. Eight stochastic fields are used to account for the influence of the sub-grid fluctuations and the chemistry is modelled with a reduced version of the GRI 3.0 mechanism for methane involving 19 species and 15 reaction steps. The simulated velocities for both the isothermal and burning cases show good agreement with the experimental data. The measured temperature and major species profiles are also reproduced to a good accuracy.  相似文献   

5.
The particle and powder properties produced within spray drying processes are influenced by various unsteady transport phenomena in the dispersed multiphase spray flow in a confined spray chamber. In this context differently scaled spray structures in a confined spray environment have been analyzed in experiments and numerical simulations. The experimental investigations have been carried out with Particle-Image-Velocimetry to determine the velocity of the gas and the discrete phase. Large-Eddy-Simulations have been set up to predict the transient behaviour of the spray process and have given more insight into the sensitivity of the spray flow structures in dependency from the spray chamber design.  相似文献   

6.
7.
孔凡  李杰 《计算力学学报》2014,31(4):438-445
提出了一种基于S变换的估计Priestley非平稳随机过程演变功率谱密度的方法。此方法的根本在于,相对于S变换的"变换核",Priestley非平稳随机过程的调制函数为慢变函数。因此,非平稳随机过程的S变换可视为相位修正后的另一非平稳随机过程。推导出了对应于特定频率点的S变换瞬时均方值和非平稳随机过程演变功率谱密度之间的关系式。将功率谱密度函数表达为有限个频率点的级数展开,通过求解一组代数方程,就能得到级数展开中每个频率点的时变系数,由此,可给出非平稳随机过程的演变功率谱密度。由于级数展开中的高斯形状函数不依赖于时间,因此,本文所提算法具有较高的计算效率。最后,给出了均匀调制和非均匀调制非平稳随机过程演变功率谱估计的算例。  相似文献   

8.
Langevin stochastic differential equations provide a consistent basis for Reynolds stress, scalar transport and p.d.f. models. However, the stochastic equations must be capable of representing existing closures, like the General Linear Model, or the Rotta and Monin return to isotropy formulations. A consistent approach to derive both Reynolds stress and scalar flux transport equations, starting from a stochastic differential equation for velocity fluctuations, is presented here. A set of algebraic relations for the dispersion tensor is derived for homogeneous shear flow and for the log-layer.  相似文献   

9.
Laboratory observation of nonlocal dispersion   总被引:1,自引:0,他引:1  
This work presents the results of a one-dimensional experimental investigation of contaminant transport in heterogeneous porous media. The usual transport equations fail to adequately predict dispersion in such systems, and new theories to account for the distinctions have not yet been examined experimentally. We use a one-dimensional porous media which is heterogeneous on the scale of observation to determine if the phenomena predicted by the new theories are observable.The experimental media are constructed from distinct layers of spherical glass beads packed into cylindrical columns of Lucite. Flow was in the direction perpendicular to the layers. Dispersion was measured by recording the concentration of a chloride tracer as a function of time and position. The scale of measurement was finer than the scale of the heterogeneity. The results show that the mixing between miscible fluids was affected by transitions in the system parameters, before the transitions were encountered by the mixing zone. This newly observed phenomenon has been interpreted as a nonlocal effect, and it begins to verify the new predictive theories.  相似文献   

10.
Flow and transport parameters such as hydraulic conductivity, seepage velocity, and dispersivity have been traditionally viewed as well-defined local quantities that can be assigned unique values at each point in space-time. Yet in practice these parameters can be deduced from measurements only at selected locations where their values depend on the scale (support volume) and mode (instruments and procedure) of measurement. Quite often, the support of the measurements is uncertain and the data are corrupted by experimental and interpretive errors. Estimating the parameters at points where measurements are not available entails an additional random error. These errors and uncertainties render the parameters random and the corresponding flow and transport equations stochastic. The stochastic flow and transport equations can be solved numerically by conditional Monte Carlo simulation. However, this procedure is computationally demanding and lacks well-established convergence criteria. An alternative to such simulation is provided by conditional moment equations, which yield corresponding predictions of flow and transport deterministically. These equations are typically integro-differential and include nonlocal parameters that depend on more than one point in space-time. The traditional concept of a REV (representative elementary volume) is neither necessary nor relevant for their validity or application. The parameters are nonunique in that they depend not only on local medium properties but also on the information one has about these properties (scale, location, quantity, and quality of data). Darcy's law and Fick's analogy are generally not obeyed by the flow and transport predictors except in special cases or as localized approximations. Such approximations yield familiar-looking differential equations which, however, acquire a non-traditional meaning in that their parameters (hydraulic conductivity, seepage velocity, dispersivity) and state variables (hydraulic head, concentration) are information-dependent and therefore, inherently nonunique. Nonlocal equations contain information about predictive uncertainty, localized equations do not. We have shown previously (Guadagnini and Neuman, 1997, 1998, 1999a, b) how to solve conditional moment equations of steady-state flow numerically on the basis of recursive approximations similar to those developed for transient flow by Tartakovsky and Neuman (1998, 1999). Our solution yields conditional moments of velocity, which are required for the numerical computation of conditional moments associated with transport. In this paper, we lay the theoretical groundwork for such computations by developing exact integro-differential expressions for second conditional moments, and recursive approximations for all conditional moments, of advective transport in a manner that complements earlier work along these lines by Neuman (1993).  相似文献   

11.
New heat transfer coefficient approximations are developed for forced laminar flow over a uniformly heated flat plate at zero incidence angle. The development is based on solving the variable property boundary layer equations using a variable property similarity transform that incorporates an adjustable similarity scaling constant. The scaling constants value is iteratively adjusted until the scaled temperature gradient-at-the-wall value is equal to the small temperature difference value. The resulting scaled profiles are nearly congruent. The congruency scaling constant is then approximated in terms of simple functions of the kinematic viscosity and the Prandlt number evaluated at the plate and free stream temperatures. The approximate scaling constants are used to form new approximations for the heat transfer coefficient. The new approximate coefficients are compared to traditional coefficients for four gases and six liquid flows covering the range 0.5 < Pr < 3,000 with large temperature differences.  相似文献   

12.
Accurate momentum coupling model is vital to simulation of dispersed multiphase flows. The overall force exerted on a particle is divided into four physically meaningful contributions, i.e., quasi-steady, stress-gradient, added-mass, and viscous-unsteady (history) forces. Time scale analysis on the turbulent multiphase flow and the viscous-unsteady kernel shows that the integral representation of the viscous-unsteady force is required except for a narrow range of particle size around the Kolmogorov length scale when particle-to-fluid density ratio is large. Conventionally, the particle-to-fluid density ratio is used to evaluate the relative importance of the unsteady forces (stress-gradient, added-mass, and history forces) in the momentum coupling. However, it is shown from our analysis that when particle-to-fluid density ratio is large, the importance of the unsteady forces depends on the particle-to-fluid length scale ratio and not on the density ratio. Provided the particle size is comparable to the smallest fluid length scale (i.e., Kolmogorov length scale for turbulence or shock thickness for shock-particle interaction) or larger, unsteady forces are important in evaluating the particle motion. Furthermore, the particle mass loading is often used to estimate the importance of the back effect of particles on the fluid. An improved estimate of backward coupling for each force contribution is established through a scaling argument. The back effects of stress-gradient and added-mass forces depend on particle volume fraction. For large particle-to-fluid density ratio, the importance of the quasi-steady force in backward coupling depends on the particle mass fraction; while that of the viscous-unsteady force is related to both particle mass and volume fractions.  相似文献   

13.
The paper elaborates on the statistical interpretation of a class of gradient models by resorting to both microscopic and macroscopic considerations. The microscopic stochastic representation of stress and strain fields reflects the heterogeneity inherently present in engineering materials at small scales. A physical argument is advanced to conjecture that stress shows small fluctuations and strong spatial correlations when compared to those of strain; then, a series expansion in the respective constitutive equations renders unimportant stress gradient terms, in contrast to strain gradient terms, which should be retained. Each higher-order strain gradient term is given a physically clear interpretation. The formulation also allows for the underlying microstrain field to be statistically non-stationary, e.g., of fractal character. The paper concludes with a comparison between surface effects predicted by gradient and stochastic formulations.  相似文献   

14.
刘源  皮爱国  杨荷  冯吉奎  黄风雷 《爆炸与冲击》2020,40(3):033302-1-033302-13

高速侵彻弹体的弹载部件/关键元器件的生存性与可靠性考核是引战系统研制领域的热点与难点问题,受原型试验的成本限制,利用缩比弹体搭载原型引信部件开展非等比例缩比试验研究是可行途径。针对传统等比例缩比方案无法满足弹体刚体过载相似性要求的情况,研究了非等比例缩比侵彻/贯穿相似规律,提出了非等比例缩比侵彻试验设计方法。数值计算结果表明:侵彻半无限厚混凝土靶条件下,非等比例缩比弹刚体过载的脉宽、幅值均可实现与原型弹刚体过载一致的加载条件;贯穿多层薄靶的条件下,通过调节靶板布置及弹体初速等试验工况,合理设计缩比弹体结构,可使非等比例缩比试验的弹体刚体过载峰值和脉宽覆盖原型试验。通过缩比模型试验得到的刚体过载特性可以为弹体及引信部件抗过载防护设计提供可靠的参考依据。

  相似文献   

15.
The J-function predicts the capillary pressure of a formation by accounting for its transport properties such as permeability and porosity. The dependency of this dimensionless function on the pore structure is usually neglected because it is difficult to implement such dependency, and also because most clastic formations contain mainly one type of pore structure. In this paper, we decompose the J-function to account for the presence of two pore structures in tight gas sandstones that are interpreted from capillary pressure measurements. We determine the effective porosity, permeability, and wetting phase saturation of each pore structure for this purpose. The throats, and not the pores, are the most important parameter for this determination. We have tested our approach for three tight gas sandstones formations. Our study reveals that decomposing the J-function allows us to capture drainage data more accurately, so that there is a minimum scatter in the scaled results, unlike the traditional approach. This study can have major implications for understanding the transport properties of a formation in which different pore structures are interconnected.  相似文献   

16.
The method of multiple scales and the reductive perturbation method are reviewed and compared for calculating uniformly valid solutions of ion-acoustic waves. It is shown that they differ only in the choice of characteristic scales used in nondimensionalizing the problem. The inconsistent initial scaling used in the reductive method is later corrected by introducing artificially scaled variables to describe the solution in a form which remains uniformly valid in the far field. As a result this solution obeys the same evolution equations in both methods. Uncoupled nonlinear evolution equations describing waves traveling in opposite directions are derived using the multiple scale method for a number of different physical problems including the case of a general Galilean invariant system in conservation form.  相似文献   

17.
The accurate treatment of finite-rate chemistry is possible by the application of stochastic turbulence models which generalize Reynolds-averaged Navier–Stokes equations. Usually, one considers linear stochastic equations. In this way, fluctuations are generated by uncorrelated forces and relax with a frequency that is independent of the actual fluctuation. It has been proved that such linear equations are well appropriate to simulate near-equilibrium flows. However, the inapplicability or unfeasibility of other methods also results in a need for stochastic methods for more complex flow simulations. Their construction requires an extension of the simple mechanism of linear stochastic equations. Two ways to perform this are investigated here. The first way is the construction of a stochastic model for velocities where the relaxation frequency depends on the actual fluctuation. This is a requirement to involve relevant mixing variations due to large-scale flow structures. The stochastic model developed is applied to the simulation of convective boundary layer turbulence. Comparisons with the results of measurements provide evidence for its good performance and the advantages compared to existing methods. The second way presented here is the construction of scalar equations which involve memory effects regarding to both the stochastic forcing and relaxation of fluctuations. This allows to overcome shortcomings of existing stochastic methods. The model predictions are shown to be in excellent agreement with the results of the direct numerical simulation of scalar mixing in stationary, homogeneous and isotropic turbulence. The consideration of memory effects is found to be essential to simulate correctly the evolution of scalar fields within the first stage of mixing.  相似文献   

18.
This work describes a methodology to simulate free surface incompressible multiphase flows. This novel methodology allows the simulation of multiphase flows with an arbitrary number of phases, each of them having different densities and viscosities. Surface and interfacial tension effects are also included. The numerical technique is based on the GENSMAC front‐tracking method. The velocity field is computed using a finite‐difference discretization of a modification of the Navier–Stokes equations. These equations together with the continuity equation are solved for the two‐dimensional multiphase flows, with different densities and viscosities in the different phases. The governing equations are solved on a regular Eulerian grid, and a Lagrangian mesh is employed to track free surfaces and interfaces. The method is validated by comparing numerical with analytic results for a number of simple problems; it was also employed to simulate complex problems for which no analytic solutions are available. The method presented in this paper has been shown to be robust and computationally efficient. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
We present a new approach for the construction of stochastic subgrid scale parameterizations. Starting from a high-resolution finite-difference discretization of some model equations, the new approach is based on splitting the model variables into fast, small-scale and slow, large-scale modes by averaging the model discretization over neighboring grid cells. After that, the fast modes are eliminated by applying a stochastic mode reduction procedure. This procedure is a generalization of the mode reduction strategy proposed by Majda, Timofeyev & Vanden-Eijnden, in that it allows for oscillations in the closure assumption. The new parameterization is applied to the forced Burgers equation and is compared with a Smagorinsky-type subgrid scale closure.  相似文献   

20.
A modified Reynolds stress turbulence model for the pressure rate of strain can be derived for dispersed two-phase flows taking into account gas-particle interaction. The transport equations for the Reynolds stresses as well as the equation for the fluctuating pressure can be derived starting from the multiphase Navier–Stokes equations. The unknown pressure rate of strain correlation in the Reynolds stress equations is then modelled by considering the multiphase equation for the fluctuating pressure. This leads to a multiphase pressure rate of strain model. The extra particle interaction source terms occurring in the model for the pressure rate of strain can be constructed easily, with no noticeable extra computational cost. Eulerian–Lagrangian simulation results of a turbulent dispersed two-phase jet are presented to show the differences in results with and without the new two-way coupling terms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号