首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study focuses on the geometric (molecular) structures, spectroscopic properties, and electronic structures of copper(II)-nitrito complexes as a function of second coordination sphere effects using a set of closely related coligands. With anionic hydrotris(pyrazolyl)borate ligands, one nitrite is bound to copper(II). Depending on the steric demand of the coligand, the coordination mode is either symmetric or asymmetric bidentate, which leads to different ground states of the resulting complexes as evident from EPR spectroscopy. The vibrational spectra of these compounds are assigned using isotope substitution and DFT calculations. The results demonstrate that nu sym(N-O) occurs at higher energy than nu asym(N-O), which is different from the literature assignments for related compounds. UV-vis absorption and MCD spectra are presented and analyzed with the help of TD-DFT calculations. The principal binding modes of nitrite to Cu(II) and Cu(I) are also investigated applying DFT. Using a neutral tris(pyrazolyl)methane ligand, two nitrite ligands are bound to copper. In this case, a very unusual binding mode is observed where one nitrite is eta1-O and the other one is eta1-N bound. This allows to study the properties of coordinated nitrite as a function of binding mode in one complex. The N-coordination mode is easily identified from vibrational spectroscopy, where N-bound nitrite shows a large shift of nu asym(N-O) to >1400 cm-1, which is a unique spectroscopic feature. The optical spectra of this compound exhibit an intense band around 300 nm, which might be attributable to a nitrite to Cu(II) CT transition. Finally, using a bidentate neutral bis(pyrazolyl)methane ligand, two eta1-O coordinated nitrite ligands are observed. The vibrational and optical (UV-vis and MCD) spectra of this compound are presented and analyzed.  相似文献   

2.
Cytochrome c nitrite reductase catalyzes the six-electron reduction of nitrite to ammonia without the release of potential reaction intermediates, such as NO or hydroxylamine. On the basis of the crystallographic observation of reaction intermediates and of density functional calculations, we present a working hypothesis for the reaction mechanism of this multiheme enzyme which carries a novel lysine-coordinated heme group (Fe-Lys). It is proposed that nitrite reduction starts with a heterolytic cleavage of the N-O bond which is facilitated by a pronounced back-bonding interaction of nitrite coordinated through nitrogen to the reduced (Fe(II)) but not the oxidized (Fe(III)) active site iron. This step leads to the formation of an [FeNO](6) species and a water molecule and is further facilitated by a hydrogen bonding network that induces an electronic asymmetry in the nitrite molecule that weakens one N-O bond and strengthens the other. Subsequently, two rapid one-electron reductions lead to an [FeNO](8) form and, by protonation, to an Fe(II)-HNO adduct. Hereafter, hydroxylamine will be formed by a consecutive two-electron two-proton step which is dehydrated in the final two-electron reduction step to give ammonia and an additional water molecule. A single electron reduction of the active site closes the catalytic cycle.  相似文献   

3.
Nitrite reduction by cytochrome cd(1) nitrite reductase (cd(1)NIR) is currently accepted to involve coordination of the nitrite nitrogen atom to the ferrous d(1) heme. Here, density functional theory results are reported on the previously unexplored O-binding of nitrite to ferrous and ferric cd(1)NIR. Although the N-isomer (nitro) is energetically favored over the O-nitrite (nitrito), even one single strong hydrogen bond may provide the energy required to put the two isomers on level terms. When hydrogen bonding existent at the cd(1)NIR active site is accounted for in the computational model, the O-nitrite isomer is found to spontaneously protonate and thus yield a ferric-hydroxo species, liberating nitric oxide. An O-nitrite ferrous cd(1)NIR complex appears to be an energetically feasible intermediate for nitrite reduction. O-Coordination would offer an advantage since the end product of nitrite reduction would be a ferric-hydroxo/water complex, rather than the more kinetically inert iron-nitrosyl complex implied by the N-nitrite mechanism.  相似文献   

4.
Riboflavin Binding Protein (RBP) binds copper in a 1:1 molar ratio, forming a distinct well-ordered type II site. The nature of this site has been examined using X-ray absorption and pulsed electron paramagnetic resonance (EPR) spectroscopies, revealing a four coordinate oxygen/nitrogen rich environment. On the basis of analysis of the Cambridge Structural Database, the average protein bound copper-ligand bond length of 1.96 A, obtained by extended x-ray absorption fine structure (EXAFS), is consistent with four coordinate Cu(I) and Cu(II) models that utilize mixed oxygen and nitrogen ligand distributions. These data suggest a Cu-O 3N coordination state for copper bound to RBP. While pulsed EPR studies including hyperfine sublevel correlation spectroscopy and electron nuclear double resonance show clear spectroscopic evidence for a histidine bound to the copper, inclusion of a histidine in the EXAFS simulation did not lead to any significant improvement in the fit.  相似文献   

5.
The reduction of nitrite to nitric oxide in dissimilatory denitrification is carried out by copper nitrite reductases (CuNIRs) via a type 2 copper site. Extended studies on CuNIRs in combination with model complexes have allowed for the establishment of two potential mechanisms for this transformation. Recent experimental and computational results have revealed further details of this process. In addition, the interaction of NO with copper sites has recently gained much attention. This review discusses recent results in the context of the known coordination chemistry of CuNIRs.  相似文献   

6.
合成了Schiff碱N-氧化吡啶-2-甲醛缩氨基脲(PNOS)及其配合物[Cu(PNOS) (NO_3)_2],并用单晶X射线衍射法测定了配体和配合物结构。PNOS晶体中通过传统 氢键形成双层二维网状结构,再由非传统氢键自组装成三维网状结构。配合物[Cu (PNOS)(NO_3)_2]中的铜为六配位,畸变八面体结构,Schiff碱(PNOS)通过N-氧 化吡啶N-O的O原子,亚胺基C=N的N原子,及羰基C=O的O原子与铜配位;一个硝基以 单齿配体形式与铜配位,另一个则以双齿配体形式配位。配合物分子通过经典氢键 相互作用,形成单层二维网状结构,再通过非经典氢键作用,自组装成双层二维网 状结构。  相似文献   

7.
The reaction of sodium nitrite with sodium dithionite was studied in the presence of cobalt(II) tetrasulfophthalocyanine, COII(TSPc)4-, in aqueous alkaline solution. The overall mechanism comprises the reduction of CoII(TSPc)4- by dithionite, followed by the formation of an intermediate complex between COI(TSPc)5- and nitrite, which undergoes two parallel subsequent reactions with and without nitrite as a reagent. Kinetic parameters for the different reaction steps of the catalytic process were determined. The final product of the reaction was found to be ammonia. Contrary to those found for the catalytic reduction of nitrite, the products of the catalytic reduction of nitrate were found to be dinitrogen and nitrous oxide. The possible catalytic reduction of nitrous oxide was confirmed by independent experiments. The striking differences in the reduction products of nitrite and nitrate are explained in terms of different structures of the intermediate complex between CoI(TSPc)5- and substrate, in which nitrite and nitrate are suggested to coordinate via nitrogen and oxygen, respectively.  相似文献   

8.
Liquid-crystalline derivatives of poly(propylene imine)dendrimers of the 0th, 1st and 2nd generations, complexed with copper(II) ions, were studied by EPR spectroscopy. The structures of copper (II) complexes with different Cu(II) loadings x per dendrimer ligand L (x = Cu/L) were determined. At the lowest concentration, the Cu(II) ions form monomeric complexes with approximately square-planar N2O2 coordination of both carbonyl oxygen and amido nitrogen atoms. At higher copper content, two kinds of Cu(II) complex sites with different geometries exist. The orienting effect of a high magnetic field was used to investigate the structure and magnetic properties of the copper(II) complexes. This effect, for the first time in dendrimers, allowed the resolution of five nitrogen super-hyperfine lines on g(z) components with the unusual coupling constant of a(Nz)= 35.9 x 10(-4) cm(-1). The combination of the magnetic parameters and the orienting effect indicates the presence of a monomeric complex with pseudotetrahedral N2O2 coordination of the Cu(II) ion, as well as a "dimer" structure with fivefold coordination, presumably due to an N3O2 environment. Higher copper loadings lead to increased exchange coupling between the complex sites.  相似文献   

9.
Due in large part to the lack of crystal structures of the amyloid-beta (Abeta) peptide and its complexes with Cu(II), Fe(II), and Zn(II), characterization of the metal-Abeta complex has been difficult. In this work, we investigated the complexation of Cu(II) by Abeta through tandem use of fluorescence and electron paramagnetic resonance (EPR) spectroscopies. EPR experiments indicate that Cu(II) bound to Abeta can be reduced to Cu(I) using sodium borohydride and that both Abeta-Cu(II) and Abeta-Cu(I) are chemically stable. Upon reduction of Cu(II) to Cu(I), the Abeta fluorescence, commonly reported to be quenched upon Abeta-Cu(II) complex formation, can be regenerated. The absence of the characteristic tyrosinate peak in the absorption spectra of Abeta-Cu(II) complexes provides evidence that the sole tyrosine residue in Abeta is not one of the four equatorial ligands bound to Cu(II), but remains close to the metal center, and its fluorescence is sensitive to the copper oxidation state and perturbations in the coordination sphere. Further analysis of the quenching and Cu(II) binding behaviors at different Cu(II) concentrations and in the presence of the competing ligand glycine offers evidence supporting the operation of two binding regimes which demonstrate different levels of fluorescence recovery upon addition of the reducing agent. We provide results that suggest the fluorescence quenching is likely caused by charge transfer processes. Thus, by using tyrosine to probe the coordination site, fluorescence spectroscopy provides valuable mechanistic insights into the oxidation state of copper ions bound to Abeta, the binding heterogeneity, and the influence of solution conditions on complex formation.  相似文献   

10.
A strategy for the formation of heterometallic coordination polymers based on novel copper(II) and cobalt(III) heteroleptic complexes (acacCN)Cu(dpm) and (acacCN)Co(dpm)(2) (acacCN = 3-cyanoacetylacetonate; dpm = dipyrrin) is presented. Using dipyrrins appended with a p- or m-pyridyl group, dpm-4py and dpm-3py, four novel copper and cobalt complexes were prepared and characterized both in solution and in the solid state. These two classes of complexes show different electrochemical properties upon investigation by cyclic voltammetry in CH(2)Cl(2). While the copper complexes show only irreversible reduction processes, the voltammogram of the cobalt species reveals the presence of two quasi-reversible reductions. In the solid state, the copper(II) compounds self-assemble to form one-dimensional architectures upon coordination of the peripheral pyridyl group to the copper center, as characterized by single-crystal X-ray diffraction. Owing to the filled coordination sphere of the octahedral cobalt centers, the (acacCN)Co(dpm-py)(2) compounds crystallize as isolated molecules. Upon reaction with silver salts, these complexes form crystalline heterometallic architectures with different organization and dimensionality, depending on the nature of the metal center and the position of the nitrogen atom in the pyridyl group. The two copper complexes lead to the formation of trinuclear species, {[(acacCN)Cu(dpm-py)](2)Ag}(+), resulting from coordination of the pyridyl groups to the silver cations. However, while meta-functionalized complexes self-assemble into an extended architecture via weak interaction of the peripheral nitrile of the acacCN ligand to the Ag(+) cation, this interaction is not present in the para-functionalized analogue. In both networks based on the Ag(BF(4)) salt, coordination of the tetrafluoroborate anion to the silver center in the rather rare chelate mode is observed. Upon assembly of the cobalt metallatectons with silver salts, two-dimensional (2D) coordination polymers are obtained in crystalline form, resulting, however, from different sets of interactions. Indeed, no coordination of the peripheral nitrile of the acacCN ligand is observed in the network incorporating the m-pyridyl-appended dpm; coordination of the pyridyl groups to the silver center and d(10)-d(10) interactions lead to a 2D architecture. In the case of the para analogue, a 2D honeycomb network is observed owing to coordination of the Ag(I) ion to two pyridyl nitrogen atoms and to one peripheral nitrile group of a acacCN ligand. This latter polymer represents a geometrical hybrid of the networks reported in the literature based on homoleptic Co(dpm-4py)(3) and Cr(acacCN)(3) complexes.  相似文献   

11.
Tyrosine nitration, often observed during neurodegenerative disorders under nitrative stress, is usually considered to be induced chemically either by nitric oxide and oxygen forming nitrogen dioxide or by the decomposition of peroxynitrite. It can also be induced enzymatically by peroxidases or superoxide dismutases in the presence of both hydrogen peroxide and nitrite forming nitrogen dioxide and/or peroxynitrite. In this study, the role of cupric ions for catalyzing tyrosine nitration in the presence of hydrogen peroxide and nitrite, by a chemical mechanism rather similar to enzymatic pathways where nitrite is oxidized to form nitrogen dioxide, was investigated by development of a microreactor also capable of acting as an emitter for electrospray ionization mass spectrometry analysis. Indeed, cupric ions and peptide-cupric ion complexes are found to be excellent Fenton catalysts, even better than Fe(III) or heme, for the formation of (?)OH radicals and/or copper(II)-bound (?)OH radicals from hydrogen peroxide. These radicals are efficiently scavenged by nitrite anions to form (?)NO(2) and by tyrosine to form tyrosine radicals, leading to tyrosine nitration in polypeptides. We also show that cupric ions can catalyze tyrosine nitration from nitric oxide, oxygen, and hydrogen peroxide as the formation of tyrosine radicals is increased in the presence of diffusible and/or copper(II) bound hydroxyl radicals. This study shows that copper has a polyvalent role in the processes of tyrosine nitration.  相似文献   

12.
The adverse effect to the inner ear of aminoglycosides, drugs widely administered for the treatment of serious infections, appears to result from the interaction of these drugs with Cu(II) or Fe(II)/Fe(III) ions. To understand more completely the metal-induced side effects of one such antibiotic, gentamicin, we studied copper(II) coordination to gentamicin C1a by potentiometry, UV-vis, CD, and EPR spectroscopies, and ESI mass spectrometry. Only monomeric complexes of the CuH(n)L stoichiometry, with n ranging from 3 to -2, were detected over the pH range of 4-12. CuH(3)L and CuH(2)L complexes exhibit the same coordination mode, binding copper(II) through the amino nitrogen atom and a deprotonated alcoholic oxygen atom of the garosamine ring. In the CuHL and CuL complexes a second amino nitrogen atom of the purpurosamine ring participates in central ion coordination. Finally, the additional axial binding of the deprotonated oxygen of the hydroxyl group of the 2-deoxystreptamine moiety occurs in the CuH(-)(1)L and CuH(-)(2)L complexes. Interactions of the Cu(II)-gentamicin-H(2)O(2) system at pH 7.4 with N,N-dimethyl-p-nitrosoaniline, arachidonic acid, and plasmid DNA confirmed that gentamicin complexes facilitate oxidative reactions leading to peroxidation of arachidonic acid and scission of double-stranded DNA mediated by copper-bound reactive oxygen species. However, the stability constants of Cu(II)-gentamicin complexes are inferior to the binding constants of copper(II) complexes with other components of human serum or cells. Computer simulations of copper(II) distribution in the human blood plasma showed that the concentration of gentamicin would have to be at impossible levels (100 M) before a significant fraction of Cu(II) ions would be bound to gentamicin. Further, once introduced into aqueous solution, histidine replaces gentamicin in Cu(II)-gentamicin complexes. Therefore, Cu(II)-gentamicin complexes might not exist under physiological conditions.  相似文献   

13.
The long 15-residue type 1 copper-binding loop of nitrite reductase has been replaced with that from the cupredoxin amicyanin (7 residues). This sizable loop contraction does not have a significant effect on the spectroscopy, and therefore, the structures of both the type 1 and type 2 Cu(II) sites. The crystal structure of this variant with Zn(II) at both the type 1 and type 2 sites has been determined. The coordination geometry of the type 2 site is almost identical to that found in the wild-type protein. However, the structure of the type 1 centre changes significantly upon metal substitution, which is an unusual feature for this class of site. The positions of most of the coordinating residues are altered of which the largest difference was observed for the coordinating His residue in the centre of the mutated loop. This ligand moves away from the active site, which results in a more open metal centre with a coordinating water molecule. Flexibility has been introduced into this region of the protein. The 200 mV increase in the reduction potential of the type 1 copper site indicates that structural changes upon reduction must stabilise the cuprous form. The resulting unfavourable driving force for electron transfer between the two copper sites, and an increased reorganisation energy for the type 1 centre, contribute to the loop variant having very little nitrite reductase activity. The extended type 1 copper-binding loop of this enzyme makes a number of interactions that are important for maintaining quaternary structure.  相似文献   

14.
Synthesis, characterization and reactivity studies of a hetero-dicopper complex, particularly towards oxygen reduction are presented. A bischlorido copper(II) trishistidine-type coordination unit is positioned directly above a copper porphyrin unit. The close distance between the two coordination fragments is secured by a rigid xanthene backbone. Surprisingly, the dinuclear complex is not active towards oxygen reduction unlike the earlier published mononuclear analogues with a bispyridylamine copper center. However, the compound architecture of this multinuclear metal complex is interesting and can play an important role in the development of new catalysts for ORR.  相似文献   

15.
Density functional methods have been applied to investigate the properties of the active site of copper-containing nitrite reductases and possible reaction mechanisms for the enzyme catalysis. The results for a model of the active site indicate that a hydroxyl intermediate is not formed during the catalytic cycle, but rather a state with a protonated nitrite bound to the reduced copper. Electron affinity calculations indicate that reduction of the T2 copper site does not occur immediately after nitrite binding. Proton affinity calculations are indicative of substantial pK(a) differences between different states of the T2 site. The calculations further suggest that the reaction does not proceed until uptake of a second proton from the bulk solution. They also indicate that Asp-92 may play both a key role as a proton donor to the substrate, and a structural role in promoting catalysis. In the D92N mutant another base, presumably a nearby histidine (His-249) may take the role as the proton donor. On the basis of these model calculations and available experimental evidence, an ordered reaction mechanism for the reduction of nitrite is suggested. An investigation of the binding modes of the nitric oxide product and the nitrite substrate to the model site has also been made, indicating that nitric oxide prefers to bind in an end-on fashion to the reduced T2 site.  相似文献   

16.
The interaction between NO and copper(II) complexes formed by peptides coming from the N-terminal prion protein octa-repeat region was studied. Aqueous solutions of the Cu-Ac-HGGG-NH(2) and the Cu-Ac-PHGGGWGQ-NH(2) systems around pH 7.5 were tested after the addition of NONOates as a source of NO. UV-Vis, room temperature and frozen solution EPR spectra showed the occurrence of copper(ii) reduction in all these complexes. The reduction of these complexes is probably mediated by the formation of a labile NO adduct, which, after re-oxidation, leads to a relatively stable NO(2)(-) adduct through the apical coordination along the void site of their square pyramidal structure. In fact, the most significant shifts in EPR magnetic parameters (g(||) and A(||) or g(iso) and A(iso)) as well as in the optical parameters (lambda(max) and epsilon(max)) gave a reason for geometrical changes of the copper coordination polyhedron from a distorted square pyramid to a pseudo-octahedron. The presence of oxygen in the aqueous solution hindered the reduction ability of NO towards copper, but it made it easier to return to the original species. In order to elucidate the possible mechanism of this interaction, the reduction of copper complexed by these ligands was followed by means of zinc powder addition. The further addition of nitrite to the solution containing reduced copper led to the conclusion that nitrite could easily form an adduct, which after re-oxidation presented the same spectral features of the species obtained when the NO interaction was followed. The complexity of this interaction could involve both an inner or an outer-sphere electron transfer mechanism.  相似文献   

17.
The copper(I) complexes of diphenylglycoluril basket receptors and , appended with bis(2-ethylpyridine)amine (PY2) and tris(2-methylpyridine)amine (TPA), respectively, and their dioxygen adducts were studied with low-temperature UV-vis and X-ray absorption spectroscopy (XAS). The copper(I) complex of, [.Cu(I)2] or, forms a micro-eta2:eta2 dioxygen complex, whereas the copper(I) complex of, [.Cu(I)2] or, does not form a well defined dioxygen complex, but is oxidized to Cu(II). Dioxygen is bound irreversibly to and the formed complex is stable over time. The coordination geometries of the above complexes were determined by XAS, which revealed that pyridyl groups and amine N-donors participate in the coordination to Cu(I) ions in the complexes of both receptors. The catalytic activities of various metal complexes of and , that were designed as mimics of dinuclear copper enzymes that can activate dioxygen, were investigated. Phenolic substrates that were expected to undergo aromatic hydroxylation, showed oxidative polymerization without insertion of oxygen. The mechanism of this polymerization turns out to be a radical coupling reaction as was established by experiments with the model substrate 2,4-di-tert-butylphenol. In addition to Cu(II), the Mn(III) complex of and the Fe(II) complex of were tested as oxidation catalysts. Oxidation of catechol was observed for the Cu(II) complex of receptor but the other metal complexes did not lead to oxidation.  相似文献   

18.
The copper(II) and copper(I) complexes of the chelating ligands 2,6-bis(benzimidazol-2'-ylthiomethyl)pyridine (bbtmp) and N,N-bis(benzimidazol-2'-ylthioethyl)methylamine (bbtma) have been isolated and characterized by electronic and EPR spectra. The molecular structures of a redox pair of Cu(II/I) complexes, viz., [Cu(bbtmp)(NO(3))]NO(3), 1, and [Cu(bbtmp)]NO(3), 2, and of [Cu(bbtmp)Cl], 3, have been determined by single-crystal X-ray crystallography. The cation of the green complex [Cu(bbtmp)(NO(3))]NO(3) possesses an almost perfectly square planar coordination geometry in which the corners are occupied by the pyridine and two benzimidazole nitrogen atoms of the bbtmp ligand and an oxygen atom of the nitrate ion. The light-yellow complex [Cu(bbtmp)]NO(3) contains copper(I) with trigonal planar coordination geometry constituted by the pyridine and two benzimidazole nitrogen atoms of the bbtmp ligand. In the yellow chloride complex [Cu(bbtmp)Cl] the asymmetric unit consists of two complex molecules that are crystallographically independent. The coordination geometry of copper(I) in these molecules, in contrast to the nitrate, is tetrahedral, with pyridine and two benzimidazole nitrogen atoms of bbtmp ligand and the chloride ion occupying the apexes. The above coordination structures are unusual in that the thioether sulfurs are not engaged in coordination and the presence of two seven-membered chelate rings facilitates strong coordination of the benzimidazole nitrogens and discourage any distortion in Cu(II) coordination geometry. The solid-state coordination geometries are retained even in solution, as revealed by electronic, EPR, and (1)H NMR spectra. The electrochemical behavior of the present and other similar CuN(3) complexes has been examined, and the thermodynamic aspects of the electrode process are correlated to the stereochemical reorganizations accompanying the redox changes. The influence of coordinated pyridine and amine nitrogen atoms on the spectral and electrochemical properties has been discussed.  相似文献   

19.
Copper transfer to cuproproteins located in vesicular compartments of the secretory pathway depends on activity of the copper-translocating ATPase (ATP7A), but the mechanism of transfer is largely unexplored. Copper-ATPase ATP7A is unique in having a sequence rich in histidine and methionine residues located on the lumenal side of the membrane. The corresponding fragment binds Cu(I) when expressed as a chimera with a scaffold protein, and mutations or deletions of His and/or Met residues in its sequence inhibit dephosphorylation of the ATPase, a catalytic step associated with copper release. Here we present evidence for a potential role of this lumenal region of ATP7A in copper transfer to cuproenzymes. Both Cu(II) and Cu(I) forms were investigated since the form in which copper is transferred to acceptor proteins is currently unknown. Analysis of Cu(II) using EPR demonstrated that at Cu:P ratios below 1:1 (15)N-substituted protein had Cu(II) bound by 4 His residues, but this coordination changed as the Cu(II) to protein ratio increased toward 2:1. XAS confirmed this coordination via analysis of the intensity of outer-shell scattering from imidazole residues. The Cu(II) complexes could be reduced to their Cu(I) counterparts by ascorbate, but here again, as shown by EXAFS and XANES spectroscopy, the coordination was dependent on copper loading. At low copper Cu(I) was bound by a mixed ligand set of His + Met, whereas at higher ratios His coordination predominated. The copper-loaded loop was able to transfer either Cu(II) or Cu(I) to peptidylglycine monooxygenase in the presence of chelating resin, generating catalytically active enzyme in a process that appeared to involve direct interaction between the two partners. The variation of coordination with copper loading suggests copper-dependent conformational change which in turn could act as a signal for regulating copper release by the ATPase pump.  相似文献   

20.
A novel neutral mixed-valent Cu(I)Cu(II)(2) triangular metallomacrocycle [Cu(3)L(2)(HL)].3CH(3)OH.2H(2)O (1) was assembled by reaction of the tetradentate ligand bis(N-salicylidene-4,4'-diphenylamine), H(2)L, with a copper(II) salt. ESI-MS show peaks only corresponding to the triangular structural species, indicating the high stability of the trimer structure in solution. Magnetic study confirms that there are two Cu(II) ions and one Cu(I) ion in a discrete triangular molecule. The crystal structure of 1 reveals that the triangle is formed by three deprotonated ligands and three copper ions with a Cu-Cu separation of ca. 11.8 A. Each copper atom is coordinated by two oxygen atoms and two nitrogen atoms from two different bis-bidentate ligands in a heavily distorted tetrahedral geometry, while each ligand is bound to two metal ions in a bis-bidentate coordination mode and links the metal centers overlapping in an unprogressive manner. Strong intramolecular pi.pi interactions between the ligands are found to stabilize the constraint conformation of the triangle. Electrochemical study reveals that the mixed-valent Cu(I)Cu(II)(2) complex is the most stable state in solution condition, and the electrochemical communication between the copper ions might be explained on the basis of the through-bond interaction. UV-vis-NIR spectral measurement demonstrates the Robin-Day class II behavior of the mixed-valence compound with a weak copper-copper interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号