首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 853 毫秒
1.
This study shows how the hearing of newborn chicks can be quantified with receiver operating characteristics (ROCs). A detailed auditory psychometric function was constructed from areas under ROCs, derived from delays in ongoing vocalizations elicited by pulsing pure tones. Over 20,000 delays were analyzed from 160 birds tested at four frequencies (0.25-2 kHz), eight intensities (-3 to 18 dB above estimated threshold), and two ages (0 and 4 days posthatch). Areas under these ROCs increase in an S-shaped function over intensity, as expected. Maximum responsiveness at approximately 75% correct shows that these neonates never achieve the near-perfect performance of mature listeners. Thresholds appear best estimated by the level required for 65% correct. Results replicate previous findings, showing that thresholds mature at low frequencies before high. Although there is no simple way to alleviate decreasing responsiveness caused by habituation over trials, improved performance results from presenting different frequencies, but only in the younger birds, and primarily with louder stimuli.  相似文献   

2.
A simultaneous masking procedure was used to derive four measures of frequency selectivity in the chinchilla. The first experiment measured critical masking ratios (CRs) at various signal frequencies. Estimates of the chinchillas' critical bandwidths derived from the CRs were much broader than comparable human estimates, indicating that the chinchilla may have inferior frequency selectivity. The second experiment measured critical bandwidths at 1, 2, and 4 kHz in a band-narrowing experiment. This technique yielded narrower estimates of critical bandwidth; however, chinchillas continued to exhibit poor frequency selectivity compared to man. The third experiment measured auditory-filter shape at 0.5, 1, and 2 kHz via rippled noise masking. Results of the rippled noise masking experiment indicate that auditory filters of humans and chinchillas are similar in terms of shape and bandwidth with chinchillas showing only slightly poorer frequency selectivity. The final experiment measured auditory filter shape at 0.5, 1, 2, and 4 kHz using notched noise masking. This experiment yielded auditory filter shapes and bandwidths similar to those derived from man. The discrepancy between the indirect estimates of frequency selectivity derived from CR and band-narrowing techniques and the direct estimates derived from rippled noise and notched noise masking are explained by taking into account the processing efficiency of the subjects.  相似文献   

3.
Hearing thresholds were estimated in four bottlenose dolphins by measuring auditory evoked responses to single and multiple sinusoidal amplitude modulated tones. Subjects consisted of two males and two females with ages from 4 to 22 years. Testing was conducted in air using a "jawphone" transducer to couple sound into each subject's lower right jaw. Carrier frequencies ranged from 10 to 160 kHz in one-half octave steps. Amplitude modulated stimuli were presented individually and as the sum of four, five, and nine simultaneous tones with unique carrier and modulation frequencies. Evoked potentials were noninvasively recorded using surface electrodes embedded in silicon suction cups. The presence or absence of an evoked response at each modulation frequency was assessed by calculating the magnitude-squared coherence from the frequency spectra of the recorded sweeps. All subjects exhibited traditional "U-shaped" audiograms with upper cutoff frequencies above 113 kHz. The time required for threshold estimates ranged from 23 to 37 min for single stimuli to 5-9 min for nine simultaneous stimuli. Agreement between thresholds estimated from single stimuli and multiple, simultaneous stimuli was generally good, indicating that multiple stimuli may be used for quick hearing assessment when time is limited.  相似文献   

4.
The chronic effects of kanamycin (KM) on hearing in the budgerigar were investigated by behavioral audiometry. The birds received a daily intramuscular injection of KM (100 mg/kg or 200 mg/kg) for 10 successive days, and absolute thresholds between pre- and post-treatment were compared. KM induced both transient and permanent low-frequency specific hearing loss; i.e., the elevation of threshold for frequencies below 1 kHz was greater than that for frequencies above 1 kHz. Moreover, the degree of hearing loss was dose dependent. The low-frequency selective effects of KM in the present study were contrary to the high-frequency specificity of aminoglycoside ototoxicity in mammals. To assess the effect of KM on auditory frequency resolution, critical ratios were estimated in pathological birds with low-frequency specific hearing loss. There was a linear relation between shift in critical ratio and shift in absolute threshold, suggesting that the increase in the critical ratio is due to a decrease in the efficiency of the detector mechanism rather than a change in the spectral resolving power of the birds.  相似文献   

5.
The potential for interactions between steady-state evoked responses to simultaneous auditory stimuli was investigated in two bottlenose dolphins (Tursiops truncatus). Three experiments were conducted using either a probe stimulus (probe condition) or a probe in the presence of a masker (probe-plus-masker condition). In the first experiment, the probe and masker were sinusoidal amplitude-modulated (SAM) tones. Probe and masker frequencies and masker level were manipulated to provide variable masking conditions. Probe frequencies were 31.7, 63.5, 100.8, and 127.0 kHz. The second experiment was identical to the first except only the 63.5 kHz probe was used and maskers were pure tones. For the third experiment, thresholds were measured for the probe and probe-plus-masker conditions using two techniques, one based on the lowest detectable response and the other based on a regression analysis. Results demonstrated localized masking effects where lower frequency maskers suppressed higher frequency probes and higher amplitude maskers produced a greater masking effect. The pattern of pure tone masking was nearly identical to SAM tone masking. The two threshold estimates were similar in low masking conditions, but in high masking conditions the lowest detectable response tended to overestimate thresholds while the regression-based analysis tended to underestimate thresholds.  相似文献   

6.
Variable stimulus presentation methods are used in auditory evoked potential (AEP) estimates of cetacean hearing sensitivity, each of which might affect stimulus reception and hearing threshold estimates. This study quantifies differences in underwater hearing thresholds obtained by AEP and behavioral means. For AEP estimates, a transducer embedded in a suction cup (jawphone) was coupled to the dolphin's lower jaw for stimulus presentation. Underwater AEP thresholds were obtained for three dolphins in San Diego Bay and for one dolphin in a quiet pool. Thresholds were estimated from the envelope following response at carrier frequencies ranging from 10 to 150 kHz. One animal, with an atypical audiogram, demonstrated significantly greater hearing loss in the right ear than in the left. Across test conditions, the range and average difference between AEP and behavioral threshold estimates were consistent with published comparisons between underwater behavioral and in-air AEP thresholds. AEP thresholds for one animal obtained in-air and in a quiet pool demonstrated a range of differences of -10 to 9 dB (mean = 3 dB). Results suggest that for the frequencies tested, the presentation of sound stimuli through a jawphone, underwater and in-air, results in acceptable differences to AEP threshold estimates.  相似文献   

7.
The decrease in absolute threshold with increasing stimulus duration (often referred to as "temporal integration") is greater for listeners with normal hearing than for listeners with sensorineural hearing loss. It has been suggested that the difference is related to reduced basilar-membrane (BM) compression in the impaired group. The present experiment tested this hypothesis by comparing temporal integration and BM compression in normal and impaired ears at low levels. Absolute thresholds were measured for 4, 24, and 44 ms pure-tone signals, with frequencies (f(s)) of 2 and 4 kHz. The difference between the absolute thresholds for the 4 and 24 ms signals was used as a measure of temporal integration. Compression near threshold was estimated by measuring the level of a 100 ms off-frequency (0.45f(s)) pure-tone forward masker required to mask a 44 ms pure-tone signal presented at sensation levels of 5 and 10 dB. There was a significant negative correlation between amount of temporal integration and absolute threshold. However, there was no correlation between absolute threshold and compression at low levels; both normal and impaired ears showed a nearly linear response. The results suggest that the differences in integration between normal and impaired ears cannot be explained by differences in BM compression.  相似文献   

8.
Adult canaries (Serinus canarius) from a closebred colony of the Belgian "Waterslager" strain were trained with operant techniques to respond to pure tones. A psychophysical tracking procedure was used to measure absolute auditory thresholds in quiet and in noise. Absolute thresholds in the middle- to high-frequency region of the audiogram were between 30 and 40 dB higher (4-5 standard deviations) than those typically reported for other song birds including canaries of other strains and Waterslagers tested some years ago from another colony. Thus the Millbrook colony of domestic canary--an oscine songbird which learns its vocalizations by reference to auditory information--shows unusually high absolute thresholds for pure tones.  相似文献   

9.
Auditory feedback influences the development of vocalizations in songbirds and parrots; however, little is known about the development of hearing in these birds. The auditory brainstem response was used to track the development of auditory sensitivity in budgerigars from hatch to 6 weeks of age. Responses were first obtained from 1-week-old at high stimulation levels at frequencies at or below 2 kHz, showing that budgerigars do not hear well at hatch. Over the next week, thresholds improved markedly, and responses were obtained for almost all test frequencies throughout the range of hearing by 14 days. By 3 weeks posthatch, birds' best sensitivity shifted from 2 to 2.86 kHz, and the shape of the auditory brainstem response (ABR) audiogram became similar to that of adult budgerigars. About a week before leaving the nest, ABR audiograms of young budgerigars are very similar to those of adult birds. These data complement what is known about vocal development in budgerigars and show that hearing is fully developed by the time that vocal learning begins.  相似文献   

10.
The thresholds of masking of short high-frequency pulses with either different durations (1.25–25 ms) and similar central frequency or different central frequencies (3.6–4.4 kHz) but similar durations were measured to reveal manifestations of the properties of peripheral encoding in auditory perception. Noises with a spiked amplitude spectrum structure were used as maskers. The central frequency and the frequency band of a masker were 4 and 1 kHz, respectively. The central frequencies of a stimulus and a masker being equal, the noise the central frequency of which coincided with the frequency corresponding to a dip of an indented spectrum was called an off(rip)-frequency masker. Owing to the off(rip)-masker, stimuli-induced masking thresholds were formed taking into account excitation in a narrow region of a basila membrane and auditory nerve fibers with characteristic frequencies from a narrow range. High-frequency pulses with an envelope in the form of the Gaussian function and sinusoidal filling were used as stimuli. At masker levels of 30 dB above the auditory threshold, frequencies of off(rip)-masker spectra spikes of 500–2000 Hz, and a central stimulus frequency of 4 kHz, the thresholds of tonal stimuli (25 ms in duration) masking in two out of three probationers were higher than the thresholds of masking of compact stimuli (1.25 ms in duration). In the third probationer, on the contrary, the thresholds of tonal stimuli masking were lower than the thresholds of compact stimuli masking. At masker levels of 50 dB, individual threshold differences disappeared. The obtained results were interpreted in the context of implementation of different methods of auditory encoding of the intensity. The methods were based on either the average frequency of auditory nerve pulsations or the number of fibers participating in the response. The interpretation was also carried out in the context of revealing manifestations of nonlinear properties of basila membrane displacements in auditory thresholds. The fact that the dependence of detection thresholds of compact stimuli on their central frequency in one of the two probationers did not reveal the minimum in case of coincidence of off(rip)-masker and stimulus frequencies pointed to the presence of an auditory “problem zone” that was likely to be localized at the periphery of the auditory system.  相似文献   

11.
Reference threshold sound-pressure levels were established for a new insert earphone, the ER-3A tubephone, and for the TDH-50 earphone. In test-retest comparisons, the tubephone produced estimates of auditory threshold as reliable as the thresholds produced by the supraaural earphone. Reference thresholds were developed for the two earphones from data contributed by three laboratories. While the TDH-50 data are in good agreement with the provisional ANSI 6-cc coupler reference levels (ASHA, 1982), the ER-3A data are at variance with the manufacturer's provisional recommendation for 2-cc coupler reference thresholds for frequencies below 1 kHz. The differences are attributed to physiologic noise that masked the lower frequency thresholds.  相似文献   

12.
Normative thresholds in the 8- to 20-kHz range as a function of age   总被引:3,自引:0,他引:3  
Using a prototype high-frequency audiometer, auditory thresholds in the 8- to 20-kHz range were obtained from 240 subjects ranging in age from 10-60 years. These measurements were obtained in interest of developing a normative database for frequencies above 8 kHz, and to evaluate intersubject variability as a function of age. An analysis of variance (ANOVA) revealed significant effects of frequency, age, and sex, and a significant frequency-by-age interaction. The largest changes in sensitivity with age occurred between 40 to 59 years. Below approximately 15 kHz, the intersubject variability of threshold estimates increased as a function of both age and frequency. Further analysis revealed that the age-related changes in variability were related to absolute thresholds rather than to age per se. When data are converted to dB HL (relative to the youngest group tested), the region of maximum hearing loss shifts to lower frequencies with increasing age, and threshold shifts with age are greatest in the 13- to 17-kHz range.  相似文献   

13.
Behavioral and auditory evoked potential (AEP) audiograms of a false killer whale were measured using the same subject and experimental conditions. The objective was to compare and assess the correspondence of auditory thresholds collected by behavioral and electrophysiological techniques. Behavioral audiograms used 3-s pure-tone stimuli from 4 to 45 kHz, and were conducted with a go/no-go modified staircase procedure. AEP audiograms used 20-ms sinusoidally amplitude-modulated tone bursts from 4 to 45 kHz, and the electrophysiological responses were received through gold disc electrodes in rubber suction cups. The behavioral data were reliable and repeatable, with the region of best sensitivity between 16 and 24 kHz and peak sensitivity at 20 kHz. The AEP audiograms produced thresholds that were also consistent over time, with range of best sensitivity from 16 to 22.5 kHz and peak sensitivity at 22.5 kHz. Behavioral thresholds were always lower than AEP thresholds. However, AEP audiograms were completed in a shorter amount of time with minimum participation from the animal. These data indicated that behavioral and AEP techniques can be used successfully and interchangeably to measure cetacean hearing sensitivity.  相似文献   

14.
Sensitivity to temporal fine structure (TFS) at low frequencies may be adversely affected by hearing loss at high frequencies even when absolute thresholds at low frequencies are within the normal range. However, in several studies suggesting this, the effects of hearing loss and age were confounded. Here, interaural phase discrimination (IPD) thresholds for pure tones at 500 and 750 Hz were measured for 39 subjects with ages from 61 to 83 yr. All subjects had near-normal audiometric thresholds at low frequencies, but thresholds varied across subjects at high frequencies. IPD thresholds were correlated with age. IPD thresholds for the test frequency of 750 Hz were weakly correlated with absolute thresholds at high frequencies, but these correlations became non-significant when the effect of age was partialed out. The results do not confirm that sensitivity to TFS at low frequencies is influenced by hearing loss at high frequencies, independently of age.  相似文献   

15.
Temporal gap detection was measured as a function of absolute signal bandwidth at a low-, a mid-, and a high-frequency region in six listeners with normal hearing sensitivity. Gap detection threshold decreased monotonically with increasing stimulus bandwidth at each of the three frequency regions. Given conditions of equivalent absolute bandwidth, gap detection thresholds were not significantly different for upper cutoff frequencies ranging from 600 to 4400 Hz. A second experiment investigated gap detection thresholds at two pressure-spectrum levels, conditions typically resulting in substantially different estimates of frequency selectivity. Estimates of frequency selectivity were collected at the two levels using a notched-noise masker technique. The gap threshold-signal bandwidth functions were almost identical at pressure-spectrum levels of 70 dB and 40 dB for the two subjects in experiment II, while estimates of frequency selectivity showed poorer frequency selectivity at the 70-dB level than at 40 dB. Data from both experiments indicated that gap detection in bandlimited noise was inversely related to signal bandwidth and that gap detection did not vary significantly with changes in signal frequency over the range of 600 to 4400 Hz. Over the range of frequencies investigated, the results indicated no clear relation between gap detection for noise stimuli and peripheral auditory filtering.  相似文献   

16.
For most normal-hearing listeners, absolute thresholds increase rapidly above about 16 kHz. One hypothesis is that the high-frequency limit of the hearing-threshold curve is imposed by the transmission characteristics of the middle ear, which attenuates the sound input [Masterton et al., J. Acoust. Soc. Am. 45, 966-985 (1969)]. An alternative hypothesis is that the high-frequency limit of hearing is imposed by the tonotopicity of the cochlea [Ruggero and Temchin, Proc. Nat. Acad. Sci. U.S.A. 99, 13206-13210 (2002)]. The aim of this study was to test these hypotheses. Forward-masked psychophysical tuning curves (PTCs) were derived for signal frequencies of 12-17.5 kHz. For the highest signal frequencies, the high-frequency slopes of some PTCs were steeper than the slope of the hearing-threshold curve. The results also show that the human auditory system displays frequency selectivity for characteristic frequencies (CFs) as high as 17 kHz, above the frequency at which absolute thresholds begin to increase rapidly. The findings suggest that, for CFs up to 17 kHz, the high-frequency limitation in humans is imposed in part by the middle-ear attenuation, and not by the tonotopicity of the cochlea.  相似文献   

17.
Dolphin auditory thresholds obtained via evoked potential audiometry may deviate from behavioral estimates by 20 dB or more. Differences in the sound source, stimulus presentation method, wave form, and duration may partially explain these discrepancies. To determine the agreement between behavioral and auditory evoked potential (AEP) threshold estimates when these parameters are held constant, behavioral and AEP hearing tests were simultaneously conducted in a bottlenose dolphin. Measurements were made in-air, using sinusoidal amplitude-modulated tones continuously projected via a transducer coupled to the pan region of the dolphin's lower jaw. Tone trials were presented using the method of constant stimuli. Behavioral thresholds were estimated using a 50% correct detection. AEP thresholds were based on the envelope following response and 50% correct detection. Differences between AEP and behavioral thresholds were within +/-5 dB, except at 10 kHz (12 dB), 20 kHz (8 dB), 30 kHz (7 dB), and 150 kHz (24 dB). In general, behavioral thresholds were slightly lower, though this trend was not significant. The results demonstrate that when the test environment, sound source, stimulus wave form, duration, presentation method, and analysis are consistent, the magnitude of the differences between AEP and behavioral thresholds is substantially reduced.  相似文献   

18.
Thresholds were measured for the detection of a temporal gap in a bandlimited noise signal presented in a continuous wideband masker, using an adaptive forced-choice procedure. In experiment I the ratio of signal spectrum level to masker spectrum level (the SMR) was fixed at 10 dB and gap thresholds were measured as a function of signal bandwidth at three center frequencies: 0.4, 1.0, and 6.5 kHz. Performance improved with increasing bandwidth and increasing center frequency. For a subset of conditions, gap threshold was also measured as bandwidth was varied keeping the upper cutoff frequency of the signal constant. In this case the variation of gap threshold with bandwidth was more gradual, suggesting that subjects detect the gap using primarily the highest frequency region available in the signal. At low center frequencies, however, subjects may have a limited ability to combine information in different frequency regions. In experiment II gap thresholds were measured as a function of SMR for several signal bandwidths at each of three center frequencies: 0.5, 1.0, and 6.5 kHz. Gap thresholds improved with increasing SMR, but the improvement was minimal for SMRs greater than 12-15 dB. The results are used to evaluate the relative importance of factors influencing gap threshold.  相似文献   

19.
In assigning binaural ongoing time differences (phase) as the cue for localization of low frequencies, and binaural intensity differences as the cue for localization of high frequencies, the duplex theory has successfully accounted for human directional hearing of tones. Sensitivity of monkeys to these cues was examined in two experiments. The dependencies on frequency of interaural intensity difference thresholds (lateralization experiment I) and time difference thresholds (lateralization experiment II) were determined behaviorally on three monkeys (M. nemestrina). The range of frequencies was from 125 Hz to 8 kHz in experiment I and from 250 Hz to 2 kHz in experiment II. The results indicate that the duplex theory is applicable to monkeys. However, monkeys are less sensitive than man to both binaural cues. The shortest time disparity monkeys discriminate is 42 microseconds at 1.5 kHz and the smallest intensity difference is 3.5 dB at 500 Hz. Good agreement between the present findings and localization measurements [C. H. Brown et al., J. Acoust. Soc. Am. 63, 1484-1492 (1978)] suggests: (a) that monkeys utilize time disparity cues through higher frequencies than man; and (b) that inaccurate localization by monkeys at high frequencies reflects decreasing sensitivity to interaural intensity cues.  相似文献   

20.
The effects of intense noise exposure on hearing in the budgerigar were examined by behavioral audiometry. After binaural exposure to an intense broadband noise, auditory threshold shifts (TS) of the birds were continuously measured at frequencies between 0.125 and 8 kHz using an avoidance conditioning technique. Temporary threshold shifts (TTS) were observed at frequencies higher than 1.5 kHz and considerable permanent threshold shifts (PTS) were observed at frequencies below 1 kHz. This pattern of threshold shifts is contrary to that observed in mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号