首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The distancedG(u,v) between two vertices u and v in a connected graph G is the length of the shortest (u,v) path in G. A (u,v) path of length dG(u,v) is called a (u,v)-geodesic. A set XV is called weakly convex in G if for every two vertices a,bX, exists an (a,b)-geodesic, all of whose vertices belong to X. A set X is convex in G if for all a,bX all vertices from every (a,b)-geodesic belong to X. The weakly convex domination number of a graph G is the minimum cardinality of a weakly convex dominating set of G, while the convex domination number of a graph G is the minimum cardinality of a convex dominating set of G. In this paper we consider weakly convex and convex domination numbers of tori.  相似文献   

2.
Let G be a 2‐connected graph, let u and v be distinct vertices in V(G), and let X be a set of at most four vertices lying on a common (u, v)‐path in G. If deg(x) ≥ d for all xV(G) \ {u, v}, then there is a (u, v)‐path P in G with XV(P) and |E(P)| ≥ d. © 2000 John Wiley & Sons, Inc. J Graph Theory 33: 55–65, 2000  相似文献   

3.
LetG(V, E) be a simple graph, and letf be an integer function onV with 1 ≤f(v) ≤d(v) to each vertexvV. An f-edge cover-coloring of a graphG is a coloring of edge setE such that each color appears at each vertexvV at leastf(v) times. Thef-edge cover chromatic index ofG, denoted by χ′ fc (G), is the maximum number of colors such that anf-edge cover-coloring ofG exists. Any simple graphG has anf-edge cover chromatic index equal to δf or δ f - 1, where $\delta _f = \mathop {\min }\limits_{\upsilon \in V} \{ \left\lfloor {\frac{{d(v)}}{{f(v)}}} \right\rfloor \} $ . LetG be a connected and not complete graph with χ′ fc (G)=δ f-1, if for eachu, vV and e =uv ?E, we have ÷ fc (G + e) > ÷ fc (G), thenG is called anf-edge covered critical graph. In this paper, some properties onf-edge covered critical graph are discussed. It is proved that ifG is anf-edge covered critical graph, then for eachu, vV and e =uv ?E there existsw ∈ {u, v } withd(w) ≤ δ f (f(w) + 1) - 2 such thatw is adjacent to at leastd(w) - δ f + 1 vertices which are all δ f -vertex inG.  相似文献   

4.
Linda Eroh 《Discrete Mathematics》2008,308(18):4212-4220
Let G be a connected graph and SV(G). Then the Steiner distance of S, denoted by dG(S), is the smallest number of edges in a connected subgraph of G containing S. Such a subgraph is necessarily a tree called a Steiner tree for S. The Steiner interval for a set S of vertices in a graph, denoted by I(S) is the union of all vertices that belong to some Steiner tree for S. If S={u,v}, then I(S) is the interval I[u,v] between u and v. A connected graph G is 3-Steiner distance hereditary (3-SDH) if, for every connected induced subgraph H of order at least 3 and every set S of three vertices of H, dH(S)=dG(S). The eccentricity of a vertex v in a connected graph G is defined as e(v)=max{d(v,x)|xV(G)}. A vertex v in a graph G is a contour vertex if for every vertex u adjacent with v, e(u)?e(v). The closure of a set S of vertices, denoted by I[S], is defined to be the union of intervals between pairs of vertices of S taken over all pairs of vertices in S. A set of vertices of a graph G is a geodetic set if its closure is the vertex set of G. The smallest cardinality of a geodetic set of G is called the geodetic number of G and is denoted by g(G). A set S of vertices of a connected graph G is a Steiner geodetic set for G if I(S)=V(G). The smallest cardinality of a Steiner geodetic set of G is called the Steiner geodetic number of G and is denoted by sg(G). We show that the contour vertices of 3-SDH and HHD-free graphs are geodetic sets. For 3-SDH graphs we also show that g(G)?sg(G). An efficient algorithm for finding Steiner intervals in 3-SDH graphs is developed.  相似文献   

5.
The Randi? index of a simple connected graph G is defined as ∑uvE(G)(d(u)d(v))-1/2. In this paper, we present a sharp lower bound on the Randi? index of cacti with r pendants.  相似文献   

6.
The study of monophonic convexity is based on the family of induced paths of a graph. The closure of a subset X of vertices, in this case, contains every vertex v such that v belongs to some induced path linking two vertices of X. Such a closure is called monophonic closure. Likewise, the convex hull of a subset is called monophonic convex hull. In this work we deal with the computational complexity of determining important convexity parameters, considered in the context of monophonic convexity. Given a graph G, we focus on three parameters: the size of a maximum proper convex subset of G (m-convexity number); the size of a minimum subset whose closure is equal to V(G) (monophonic number); and the size of a minimum subset whose convex hull is equal to V(G) (m-hull number). We prove that the decision problems corresponding to the m-convexity and monophonic numbers are NP-complete, and we describe a polynomial time algorithm for computing the m-hull number of an arbitrary graph.  相似文献   

7.
Let G be a connected graph with vertex set V(G). The degree distance of G is defined as ${D'(G) = \sum_{\{u, v\}\subseteq V(G)} (d_G(u) + d_G (v))\, d(u,v)}$ , where d G (u) is the degree of vertex u, d(u, v) denotes the distance between u and v, and the summation goes over all pairs of vertices in G. In this paper, we characterize n-vertex unicyclic graphs with given matching number and minimal degree distance.  相似文献   

8.
For an ordered set W = {w 1, w 2,..., w k} of vertices and a vertex v in a connected graph G, the representation of v with respect to W is the k-vector r(v|W) = (d(v, w 1), d(v, w 2),... d(v, w k)), where d(x, y) represents the distance between the vertices x and y. The set W is a resolving set for G if distinct vertices of G have distinct representations with respect to W. A resolving set for G containing a minimum number of vertices is a basis for G. The dimension dim(G) is the number of vertices in a basis for G. A resolving set W of G is connected if the subgraph 〈W〉 induced by W is a nontrivial connected subgraph of G. The minimum cardinality of a connected resolving set in a graph G is its connected resolving number cr(G). Thus 1 ≤ dim(G) ≤ cr(G) ≤ n?1 for every connected graph G of order n ≥ 3. The connected resolving numbers of some well-known graphs are determined. It is shown that if G is a connected graph of order n ≥ 3, then cr(G) = n?1 if and only if G = K n or G = K 1,n?1. It is also shown that for positive integers a, b with ab, there exists a connected graph G with dim(G) = a and cr(G) = b if and only if $\left( {a,b} \right) \notin \left\{ {\left( {1,k} \right):k = 1\;{\text{or}}\;k \geqslant 3} \right\}$ Several other realization results are present. The connected resolving numbers of the Cartesian products G × K 2 for connected graphs G are studied.  相似文献   

9.
A subset of vertices D of a graph G is a dominating set for G if every vertex of G not in D is adjacent to one in D. The cardinality of any smallest dominating set in G is denoted by γ(G) and called the domination number of G. Graph G is said to be γ-vertex-critical if γ(G-v)<γ(G), for every vertex v in G. A graph G is said to be factor-critical if G-v has a perfect matching for every choice of vV(G).In this paper, we present two main results about 3-vertex-critical graphs of odd order. First we show that any such graph with positive minimum degree and at least 11 vertices which has no induced subgraph isomorphic to the bipartite graph K1,5 must contain a near-perfect matching. Secondly, we show that any such graph with minimum degree at least three which has no induced subgraph isomorphic to the bipartite graph K1,4 must be factor-critical. We then show that these results are best possible in several senses and close with a conjecture.  相似文献   

10.
C. Balbuena 《Discrete Mathematics》2008,308(16):3526-3536
For a connected graph G, the rth extraconnectivity κr(G) is defined as the minimum cardinality of a cutset X such that all remaining components after the deletion of the vertices of X have at least r+1 vertices. The standard connectivity and superconnectivity correspond to κ0(G) and κ1(G), respectively. The minimum r-tree degree of G, denoted by ξr(G), is the minimum cardinality of N(T) taken over all trees TG of order |V(T)|=r+1, N(T) being the set of vertices not in T that are neighbors of some vertex of T. When r=1, any such considered tree is just an edge of G. Then, ξ1(G) is equal to the so-called minimum edge-degree of G, defined as ξ(G)=min{d(u)+d(v)-2:uvE(G)}, where d(u) stands for the degree of vertex u. A graph G is said to be optimally r-extraconnected, for short κr-optimal, if κr(G)?ξr(G). In this paper, we present some sufficient conditions that guarantee κr(G)?ξr(G) for r?2. These results improve some previous related ones, and can be seen as a complement of some others which were obtained by the authors for r=1.  相似文献   

11.
A dominating broadcast on a graph G = (V, E) is a function f: V → {0, 1, ..., diam G} such that f(v) ≤ e(v) (the eccentricity of v) for all vV and such that each vertex is within distance f(v) from a vertex v with f(v) > 0. The cost of a broadcast f is σ(f) = Σ vV f(v), and the broadcast number λ b (G) is the minimum cost of a dominating broadcast. A set X ? V(G) is said to be irredundant if each xX dominates a vertex y that is not dominated by any other vertex in X; possibly y = x. The irredundance number ir (G) is the cardinality of a smallest maximal irredundant set of G. We prove the bound λb(G) ≤ 3 ir(G)/2 for any graph G and show that equality is possible for all even values of ir (G). We also consider broadcast domination as an integer programming problem, the dual of which provides a lower bound for λb.  相似文献   

12.
The restricted connectivity κ(G) of a connected graph G is defined as the minimum cardinality of a vertex-cut over all vertex-cuts X such that no vertex u has all its neighbors in X; the superconnectivity κ1(G) is defined similarly, this time considering only vertices u in G-X, hence κ1(G)?κ(G). The minimum edge-degree of G is ξ(G)=min{d(u)+d(v)-2:uvE(G)}, d(u) standing for the degree of a vertex u. In this paper, several sufficient conditions yielding κ1(G)?ξ(G) are given, improving a previous related result by Fiol et al. [Short paths and connectivity in graphs and digraphs, Ars Combin. 29B (1990) 17-31] and guaranteeing κ1(G)=κ(G)=ξ(G) under some additional constraints.  相似文献   

13.
A shortest path connecting two vertices u and v is called a u-v geodesic. The distance between u and v in a graph G, denoted by dG(u,v), is the number of edges in a u-v geodesic. A graph G with n vertices is panconnected if, for each pair of vertices u,vV(G) and for each integer k with dG(u,v)?k?n-1, there is a path of length k in G that connects u and v. A graph G with n vertices is geodesic-pancyclic if, for each pair of vertices u,vV(G), every u-v geodesic lies on every cycle of length k satisfying max{2dG(u,v),3}?k?n. In this paper, we study sufficient conditions of geodesic-pancyclic graphs. In particular, we show that most of the known sufficient conditions of panconnected graphs can be applied to geodesic-pancyclic graphs.  相似文献   

14.
A directed dominating set in a directed graph D is a set S of vertices of V such that every vertex uV(D)?S has an adjacent vertex v in S with v directed to u. The directed domination number of D, denoted by γ(D), is the minimum cardinality of a directed dominating set in D. The directed domination number of a graph G, denoted Γd(G), is the maximum directed domination number γ(D) over all orientations D of G. The directed domination number of a complete graph was first studied by Erd?s [P. Erd?s On a problem in graph theory, Math. Gaz. 47 (1963) 220–222], albeit in a disguised form. In this paper we prove a Greedy Partition Lemma for directed domination in oriented graphs. Applying this lemma, we obtain bounds on the directed domination number. In particular, if α denotes the independence number of a graph G, we show that αΓd(G)≤α(1+2ln(n/α)).  相似文献   

15.
Given a graph G, the m-step graph of G, denoted by S m (G), has the same vertex set as G and an edge between two distinct vertices u and v if there is a walk of length m from u to v. The line graph of G, denoted by L(G), is a graph such that the vertex set of L(G) is the edge set of G and two vertices u and v of L(G) are adjacent if the edges corresponding to u and v share a common end vertex in G. We characterize connected graphs G such that S m (G) and L(G) are isomorphic.  相似文献   

16.
An arc of a graph is an oriented edge and a 3-arc is a 4-tuple (v,u,x,y) of vertices such that both (v,u,x) and (u,x,y) are paths of length two. The 3-arc graph of a given graph G, X(G), is defined to have vertices the arcs of G. Two arcs uv,xy are adjacent in X(G) if and only if (v,u,x,y) is a 3-arc of G. This notion was introduced in recent studies of arc-transitive graphs. In this paper we study diameter and connectivity of 3-arc graphs. In particular, we obtain sharp bounds for the diameter and connectivity of X(G) in terms of the corresponding invariant of G.  相似文献   

17.
For a pair of vertices x and y in a graph G, we denote by dG(x,y) the distance between x and y in G. We call x a boundary vertex of y if x and y belong to the same component and dG(y,v)?dG(y,x) for each neighbor v of x in G. A boundary vertex of some vertex is simply called a boundary vertex, and the set of boundary vertices in G is called the boundary of G, and is denoted by B(G).In this paper, we investigate graphs with a small boundary. Since a pair of farthest vertices are boundary vertices, |B(G)|?2 for every connected graph G of order at least two. We characterize the graphs with boundary of order at most three. We cannot give a characterization of graphs with exactly four boundary vertices, but we prove that such graphs have minimum degree at most six. Finally, we give an upper bound to the minimum degree of a connected graph G in terms of |B(G)|.  相似文献   

18.
A (p, q) graph G is edge-magic if there exists a bijective function f: V(G) ∪ E(G) → {1,2,…,p + q} such that f(u) + f(v) + f(uv) = k is a constant, called the valence of f, for any edge uv of G. Moreover, G is said to be super edge-magic if f(V(G)) = {1,2,…,p}. The question studied in this paper is for which graphs is it possible to add a finite number of isolated vertices so that the resulting graph is super edge-magic? If it is possible for a given graph G, then we say that the minimum such number of isolated vertices is the super edge-magic deficiency, μs(G) of G; otherwise we define it to be + ∞.  相似文献   

19.
A subset X of the vertex set of a graph G is a secure dominating set of G if X is a dominating set of G and if, for each vertex u not in X, there is a neighbouring vertex v of u in X such that the swap set (X/{v}) ? {u} is again a dominating set of G, in which case v is called a defender. The secure domination number of G is the cardinality of a smallest secure dominating set of G. In this paper, we show that every graph of minimum degree at least 2 possesses a minimum secure dominating set in which all vertices are defenders. We also characterise the classes of graphs that have secure domination numbers 1, 2 and 3.  相似文献   

20.
Let G be a simple graph with n vertices. For any v ? V(G){v \in V(G)} , let N(v)={u ? V(G): uv ? E(G)}{N(v)=\{u \in V(G): uv \in E(G)\}} , NC(G) = min{|N(u) èN(v)|: u, v ? V(G){NC(G)= \min \{|N(u) \cup N(v)|: u, v \in V(G)} and uv \not ? E(G)}{uv \not \in E(G)\}} , and NC2(G) = min{|N(u) èN(v)|: u, v ? V(G){NC_2(G)= \min\{|N(u) \cup N(v)|: u, v \in V(G)} and u and v has distance 2 in E(G)}. Let l ≥ 1 be an integer. A graph G on nl vertices is [l, n]-pan-connected if for any u, v ? V(G){u, v \in V(G)} , and any integer m with lmn, G has a (u, v)-path of length m. In 1998, Wei and Zhu (Graphs Combinatorics 14:263–274, 1998) proved that for a three-connected graph on n ≥ 7 vertices, if NC(G) ≥ n − δ(G) + 1, then G is [6, n]-pan-connected. They conjectured that such graphs should be [5, n]-pan-connected. In this paper, we prove that for a three-connected graph on n ≥ 7 vertices, if NC 2(G) ≥ n − δ(G) + 1, then G is [5, n]-pan-connected. Consequently, the conjecture of Wei and Zhu is proved as NC 2(G) ≥ NC(G). Furthermore, we show that the lower bound is best possible and characterize all 2-connected graphs with NC 2(G) ≥ n − δ(G) + 1 which are not [4, n]-pan-connected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号