共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
4.
含夹杂和微裂纹复合材料的损伤演化和分析 总被引:3,自引:0,他引:3
利用细观力学的Eshelby和Mori-Tanaka理论,考虑纤维和微裂纹之间的相互作用,研究了定向分布微裂纹的演化规律及其对材料力学性能的影响,分析了纤维体积份数,弹性系数、微裂纹密度,纤维不同取向与基体开裂强度之间的变化关系,并给出了许多有意义的结论。 相似文献
5.
6.
7.
复合材料中夹杂含量较高时,夹杂间的相互作用能显著改变材料细观应力应变场分布,基体和夹杂中的平均应力应变水平也会发生较大变化,导致复合材料强度等力学性能发生显著变化. 为修正单一夹杂模型运用在实际材料中的误差,基于相互作用直推估计法,建立一种考虑含夹杂相互作用的夹杂界面裂纹开裂模型. 首先根据相互作用直推估计法,得到残余应力和外载应力共同作用下夹杂中的平均应力,再计算无限大基体中相同的夹杂达到相同应力场时的等效加载应力,将此加载应力作为含界面裂纹夹杂的等效应力边界条件,在此边界条件下求得界面裂纹尖端的应力强度因子,进而得到界面裂纹开裂的极限加载条件,并分析了夹杂弹性性能、含量、热残余应力、夹杂尺寸等因素对界面裂纹开裂条件的影响. 结果表明,方法能够有效修正单夹杂模型运用在实际材料中的误差,较大的残余应力对界面裂纹开裂有重要的影响,夹杂刚度的影响并非单调且比较复杂;在残余应力较小时,降低柔性夹杂刚度或者增大刚性夹杂刚度都有利于提高材料强度;扩大夹杂尺寸将导致裂纹开裂极限应力显著降低,从而降低材料强度. 相似文献
8.
基于构型力概念提出一种可判断裂纹起裂以及裂纹扩展方向的新断裂准则.该准则假设当构型合力值达到一个临界值时裂纹开始扩展,而裂纹扩展的方向则为构型合力的矢量方向.基于此断裂准则,本文开发构型力的有限元计算方法,实现对裂纹扩展的数值模拟,并着重对工程中常见的含孔洞/夹杂结构的裂纹扩展问题展开研究.研究结果表明,基于构型力的裂纹扩展准则可以很好地预测裂纹与孔/夹杂的干涉作用,其数值模拟结果与实验结果相符,从而验证了该裂纹扩展模拟方法的有效性.通过对裂纹和夹杂(圆孔、软夹杂、硬夹杂)干涉问题的数值模拟表明,裂纹前端夹杂对裂纹的扩展具有重要影响.裂纹的扩展方向与裂纹和夹杂的相对位置、以及夹杂类型密切相关.软夹杂和圆孔会吸引裂纹向其扩展,而硬夹杂会排斥裂纹扩展,裂纹在扩展过程中会绕开硬夹杂.当裂纹与夹杂夹角较小时,夹杂对裂纹扩展的影响作用明显,当夹角较大时,夹杂对裂纹扩展的影响较小;特别当裂纹与夹杂夹角为45°时,软夹杂和圆孔可能会抑制裂纹的扩展,使裂纹扩展发生止裂.研究结果有助于认清含孔洞/夹杂结构中的裂纹扩展或止裂问题,对于工程中的断裂问题具有重要指导意义. 相似文献
9.
吴祖荣;董庆兵;熊广 《固体力学学报》2024,(4):441-455
材料不可避免引入的夹杂、裂纹等缺陷影响其力学特性.为了研究各向同性全空间内裂纹与夹杂的相互干涉作用,本文基于等效夹杂法与分布位错技术相结合的方法,将非均质夹杂近似为与基体具有相同弹性模量且含有未知本征应变的均质夹杂,将Ⅰ/Ⅱ混合型裂纹近似为密度未知的攀移位错和滑移位错,建立了可仿真各向同性全空间内夹杂和裂纹干涉作用的半解析模型,并基于位错分布求解了裂纹尖端的应力强度因子.模型采用共轭梯度法迭代求解了未知量,并借助快速傅里叶变换算法提高计算效率,最后通过有限元方法验证了模型的有效性.本模型可为缺陷材料内各结构的干涉作用以及由此诱导的断裂行为的解析提供理论方法. 相似文献
10.
11.
王银邦 《应用数学和力学(英文版)》2004,25(2):152-157
The interaction between an elastic rectangular inclusion and a kinked crack inan infinite elastic body was considered by using boundary element method. The new complexboundary integral equations were derived. By introducing a complex unknown function H(t)related to the interface displacement density and traction and applying integration by parts,the traction continuous condition was satisfied automatically. Only one complex boundaryintegral equation was obtained on interface and involves only singularity of order l/ r. Toverify the validity and effectiveness of the present boundary element method, some typicalexamples were calculated. The obtained results show that the crack stress intensity factorsdecrease as the shear modulus of inclusion increases. Thus, the crack propagation is easiernear a softer inclusion and the harder inclusion is helpful for crack arrest. 相似文献
12.
Interaction between crack and elastic inclusion 总被引:1,自引:0,他引:1
INTERACTIONBETWEENCRACKANDELASTICINCLUSIONZhangMing-huan(张明焕),TangRen-ji(汤任基)(ShanghaiJiaotongUniversity,Shanghai,200030,P.R.... 相似文献
13.
The interaction problem between a circular inclusion and a symmetrically branched crack embedded in an infinite elastic medium is solved. The branched crack is modeled as three straight cracks which intersect at a common point and each crack is treated as a continuous contribution of edge dislocations. Green's functions are used to reduce the problem into a system of singular equations consisting of the distributions of Burger's dislocation vectors as unknown functions through the superposition technique. The resulting integral equations are solved numerically by the method of Gauss-Chebychev quadrature. The proposed integral equation approach is first verified for two limiting cases against the literature. More effort is paid on the effect of inclusion on both the Mode I and Mode lI stress intensity factors at the branch tips. The effect of inclusion on the branching path is also investigated. 相似文献
14.
Kailash C. Jajam Hareesh V. Tippur 《International Journal of Solids and Structures》2012,49(9):1127-1146
Experimental simulations of dynamic crack growth past inclusions of two different elastic moduli, stiff (glass) and compliant (polyurethane) relative to the matrix (epoxy), are carried out in a 2D setting. Full-field surface deformations are mapped in the crack–inclusion vicinity optically. The crack growth behavior as a function of inclusion–matrix interfacial strength and the inclusion location relative to the crack is studied under stress-wave loading conditions. An ultra high-speed rotating mirror-type digital camera is used to record random speckle patterns in the crack–inclusion vicinity to quantify in-plane displacement fields. The crack-tip deformation histories from the time of impact until complete fracture are mapped and fracture parameters are extracted. The crack front is arrested by the symmetrically located compliant inclusion for about half the duration needed for complete fracture event. The dynamically propagating crack is attracted and trapped by the weakly bonded inclusion interface for both stiff and compliant symmetrically located inclusion cases, whereas it is deflected away by the strongly bonded stiff inclusion and attracted by strongly bonded compliant inclusion when located eccentrically. The crack is arrested by a strongly bonded compliant inclusion for a significant fraction of the total dynamic event and is longer than the one for the weakly bonded counterpart. The compliant inclusion cases show higher fracture toughness than the stiff inclusion cases. Measured crack-tip mode-mixities correlate well with the observed crack attraction and repulsion mechanisms. Macroscopic examination of fracture surfaces reveals much higher surface roughness and ruggedness after crack–inclusion interaction for compliant inclusion than the stiff one. Implications of these observations on the dynamic fracture behavior of micron size A-glass and polyamide (PA6) particle filled epoxy is demonstrated. Filled-epoxy with 3% Vf of PA6 filler is shown to produce the same dynamic fracture toughness enhancement as the one due to 10% Vf glass. 相似文献
15.
In this work, the symmetric-Galerkin boundary element method (SGBEM) for 2-D elastodynamics in the Laplace-space frequency domain (Laplace domain) is employed to study the dynamic stress intensity factors (DSIFs) and the dynamic T-stress (DTS) during the interaction between a crack and an auxetic inclusion under impact loading conditions. It is found that, while the auxeticity has virtually no effect on the DSIFs, its influence on the DTS is noticeable. This finding is particularly important as it implies the imperative need of fracture criteria based on both the DSIFs and DTS for predicting crack growth in composite materials with auxetic phases. 相似文献
16.
The problem of interaction between a curvilinear crack (or a system of such cracks) and a misfitting inclusion of arbitrary shape (or a system of such inclusions) inside an infinite isotropic elastic medium of the same material as the inclusion was solved by using the complex potential technique and reducing the problem to a complex Cauchy type singular integral equation along the crack only (or the system of cracks).
Résumé Le problème de l'influence mutuelle d'une fissure curviligne (ou d'un système de telles fissures) et une inclusion malajustée de forme arbitraire (ou un système de telles inclusions) dans un milieu infini élastique isotrope du même matériau que l'inclusion a été résolu en utilisant la technique des potentiels complexes et en réduisant ainsi le probléme à une équation intégrale singulière complexe du type Cauchy seulement le long de la fissure (ou du système des fissures).相似文献
17.
The present investigation of the crack problem in piezoelectric materials is performed based on the non-local theory. After some manipulations, the impermeable crack, the permeable crack (the crack gap is full of NaCI solution), and the semi-permeable crack (the crack gap is full of air or silicon oil) are reduced to a uniform formulation by assuming the normal electric displacement on the crack surfaces to be an unknown variable. Thus, a triple integral equation with the unknown normal electric displacement is established. By using the Newton iterative method and solving the triple integral equation, it is found that the normal electric displacement on the crack surfaces is no longer a constant as determined by previous studies, rather, it depends upon the remote combined electromechanical loadings. Numerical results of the stresses and electric displacement fields show that there are no singularities at the crack tips so that the stresses remain finite. It is of great significance that the concrete electric boundary condition on the crack surfaces exerts significant influence on the near-tip fields and in this way plays an important role in evaluating the crack stability in the non-local piezoelectric materials. More specifically, the impermeable crack model always overestimates the finite stresses at the crack tips, whereas the permeable crack model always underestimates them. 相似文献
18.
IntroductionTheinteractionofdislocationswithinclusionsisofconsiderableimportanceforunderstandingthephysicalbehaviorofmaterials.Suchstudiescanprovidedinformationconcerningcertainstrengtheningorhardeningmechanismsinnumberoftraditionalandcompositemateri… 相似文献
19.
A closed-form solution has been developed to predict the effect of T-stress on the crack–inclusion interaction. As validated by several numerical examples, the approximate solution has satisfactory accuracy for different inclusion shapes and modulus ratios between inclusion and matrix under different T-stress levels. Thus the role of T-stress in crack–inclusion interaction can be predicted quantitatively. 相似文献
20.
A rigid inclusion in an elastic space under the action of a uniform heat flow in the inclusion plane
A. Kaczyński B. Monastyrskyy 《International Journal of Solids and Structures》2013,50(16-17):2631-2640
A solution is presented for the three dimensional static thermoelastic problem of an absolutely rigid inclusion (anticrack) in the case when a uniform heat flow is directed along the inclusion plane. By using the potential method and the Fourier transform technique, the problem is reduced to a system of coupled two-dimensional singular integral equations for the shear stress jumps across the inclusion. As an illustration, a typical application to the circular anticrack is presented. Explicit expressions for the thermal stresses in the inclusion plane are obtained and discussed from the point of view of material failure. 相似文献