首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
A new method for non-invasive in situ monitoring of a microfiltration process is described. In microfiltration systems, local information on the deposition characteristics can be used to determine the cake behavior during a filtration run. Typically, non-invasive methods of fouling study are restricted to specialized membranes, or require highly complex systems. This study employs the use of synthetic embedded channel membranes, with channels separated by a porous structure (active membrane). The characteristics of the active membrane have been analyzed. Deposition on the membrane surface can be observed and monitored optically across the width of the feed channel. This can be used to observe the liquid hydrodynamics in the channel as well as the local cake properties in time. In dead end filtration, it has been observed that with 6 μm particles, the cake initially deposits towards the end of the membrane. However, as filtration continues, the deposition changes with more local deposition towards the channel entrance, leading to a more homogeneous cake layer.  相似文献   

2.
Although the principal mechanisms of crossflow microfiltration (MF) are well-known, the practical applicability of the resulting microfiltration models is still limited. This can be largely attributed to the lack of understanding of effects of polydispersity in the particulate suspensions, as relevant to concentration polarisation in MF. This paper describes an investigation of concentration polarisation behaviour of bidisperse suspensions, in the regime where shear-induced diffusion is the dominant back-transport mechanism. In the transient flux regime, the particle deposition onto the membrane was monitored by means of confocal scanning laser microscopy. As in accordance with the linear dependence of the shear-induced diffusivity on a2, only the small particles in the bidisperse suspensions were found to deposit onto the membrane. The back-transport flux that was calculated from the deposition rate and the actual permeate flux, was found to be independent of the composition of the suspension, whereas it was equal to the back-transport flux of a monodisperse suspension of the small particles only, with a similar total particle fraction. These results can be explained with the occurrence of particle size segregation in the feed flow, which leads to an enrichment with small particles of the suspension near the membrane. The findings are also shown to be relevant to particle fractionation processes by MF. In such fractionation processes, particle size segregation is found to have a strong effect on the separation characteristics such as particle size and fat content of the permeate. A polydisperse suspension could be fractionated using a membrane having a pore size larger than the largest particles present. The fractionation thus results not from size exclusion in the membrane, but from segregation effects in the feed channel.  相似文献   

3.
In dead-end hollow fiber filtration with humic acid solutions, we observed that the humic material accumulates in the final part of the fiber. We proved the hypothesis that backwashing of the last part of the fiber is sufficient to operate the filtration process in a sustainable manner. This strategy works very well for feed solutions that result in either local accumulation of the material at the end of the fiber, or that form a well-defined concentration polarization layer that does not lead to deposition. When deposition throughout the whole module occurs, the proposed cleaning strategy is unsuccessful. This overall deposition occurs when a force balance over the particle, results in net transport to the membrane surface over the entire length of the module. We simulated such conditions by the addition of calcium to the feed solutions. The latter results in large aggregates carried towards the whole membrane area by convective water flow, and an increased interaction between the aggregates and the membrane.  相似文献   

4.
The ability of dielectrophoretic (DEP) forces created using a microelectrode array to levitate particles in a colloidal suspension is studied experimentally and theoretically. The experimental system employs microfabricated electrode arrays on a glass substrate to apply repulsive DEP forces on polystyrene latex particles suspended in an aqueous medium. A numerical model based on the convection-diffusion-migration equation is presented to calculate the concentration distribution of colloidal particles in shear flow under the influence of a repulsive DEP force field. The results obtained from the numerical simulations are compared against trajectory analysis results and experimental data. The results indicate that by incorporating ac electric field-induced DEP forces in a shear flow, particle accumulation and deposition on the flow channel surfaces can be significantly reduced or even completely averted. The mathematical model is then used to indicate how the deposition behavior is modified in the presence of a permeable substrate, representative of tangential flow membrane filtration operations. The results indicate that the repulsive dielectrophoretic (DEP) forces imparted to the particles suspended in the feed can be employed to mitigate membrane fouling in a cross-flow filtration process.  相似文献   

5.
A microscopic model of the layer formation and the cake growth at the crossflow microfiltration will be introduced. The model considers the hydrodynamic, adhesive and friction forces acting on a single particle during the filtration process. It can be shown that mainly the balance between the lift force and the drag force of the filtrate flow determines the layer formation at the membrane. Particle attachment to the layer is mostly an irreversible process. This is due to the large influence of the adhesive forces. The irreversibility of particle attachment was proved by experiments with monodisperse particles. The introduced model allows the prediction of the instationary crossflow filtration processes. The filtration rate and structure of the formed layer can be calculated. In the case of a filtration at constant transmembrane pressure the model calculation shows a good correspondence to the experimental results.  相似文献   

6.
Particle deposition and fouling are critical factors governing the performance of microfiltration and ultrafiltration systems. Particle trajectories were evaluated by numerical integration of the Langevin equation, accounting for the combined effects of electrostatic repulsion, enhanced hydrodynamic drag, and Brownian diffusion. In the absence of Brownian forces, particles are unable to enter the membrane pores unless the drag associated with the filtration velocity can overcome the electrostatic repulsion. Brownian forces significantly alter this behavior, allowing some particles to enter the pore even at low filtration velocities. The average particle transmission, evaluated from the probability of having a particle enter the pore, increases with increasing filtration velocity due to the greater hydrodynamic drag force on the particle. These results provide important insights into particle behavior in membrane systems.  相似文献   

7.
Biogenic amines are present in some fermented and non-fermented beverages and can cause diseases. This study analyzes the feasibility of separating biogenic amines by nanofiltration in acidic medium. Solutions of chloride salts of three biogenic amines: putrescine, histamine and tyramine were filtered through a nanofiltration membrane with a 1000 Da molecular weight cut-off (MWCO) and a positive electrical charge at pH 3. Increasing the transmembrane pressure or cross flow velocity led to an increase in solute rejection and permeate flow. Moreover, a higher electrical charge or lower concentration of amine cations caused a larger rejection indicating that membrane-solutes repulsion governs the filtration process. Finally, the experimental results were analyzed using the classic Donnan–Steric pore model. Values of 0.83 nm and 5.4 μm were estimated for pore radius and membrane effective ratio thickness-porosity from the filtration of neutral solutes. Membrane volumetric charge density and the proton diffusivity inside the pores were estimated from the experimental results.  相似文献   

8.
Dead-end filtration of colloids using hollow fibers has been analysed theoretically and experimentally. A mathematical model for constant flux filtration using dead-end hollow fiber membranes has been developed by combining the Hagen–Poiseuille equation, the (standard) filtration equation, and cake filtration theory of Petsev et al. [D.N. Petsev, V.M. Starov, I.B. Ivanov, Concentrated dispersions of charged colloidal particles: sedimentation, ultrafiltration and diffusion, Colloid Surf. A: Physicochem. Eng. Aspects, 81 (1993) 65–81.] to describe the time dependence of the filtration behavior of hollow fiber membranes experiencing particle deposition on their surface. Instead of using traditional constitutive equations, the resistance of the cake layer formed by the deposited colloids has been directly correlated to the cake structure. This structure is determined by application of a force balance on a particle in the cake layer combined with the assumption that an electrostatically stable cake layer of mono-sized particles would be ordered in a regular packing geometry of minimum energy. The developed model has been used to identify the relationship between the filtration behavior of the hollow fiber membrane and the particle properties, fiber size, and imposed average flux. Filtration experiments using polystyrene latex particles of relatively narrow size distribution with a single dead-end hollow fiber membrane demonstrate good consistency between experimental results and model prediction. The developed model has been used to simulate the distribution of the cake resistance, transmembrane pressure, and flux along the hollow fiber membrane and used to assess the effect of fiber size, particle size, zeta potential, and the average imposed flux on the suction pressure-time profiles, flux, and cake resistance distributions. These results provide new insights into the filtration behavior of the hollow fiber membrane under constant flux conditions.  相似文献   

9.
The removals of single aromatic alcohols, including para nitro phenol (PNP), meta nitro phenol (MNP), phenol (P), catechol (CC), beta napthol (BN) and ortho chloro phenol (OCP) from aqueous solution have been studied using micellar-enhanced ultrafiltration (MEUF). Cetyl (hexadecyl) pyridinium chloride (CPC) has been taken as the cationic surfactant. An organic polyamide membrane of molecular weight cut-off 1000 is used in the MEUF experiments. Experiments are conducted using unstirred batch cell and a continuous cross flow cell. The effects of surfactant-to-solute concentration ratio in the feed, transmembrane pressure drop and cross flow rate on the permeate flux and observed retention of each solute have been studied in detail. The retention of solutes without using surfactant varies from 3 to 15% only at a typical feed solute concentration of 0.09 kg/m3. However, under the same operating pressure (345 kPa), retention increases to about 66–98% depending on the nature of solute at the end of 30 min of experiment in the batch cell using surfactant micelles (10 kg/m3). The maximum retention of solute is obtained at surfactant-to-solute concentration ratio of 110. Free surfactant molecules present in the permeate and retentate are then recovered by a two-step chemical treatment process. In the first step, the surfactant is precipitated by potassium iodide and in the second step, the surfactant is recovered from the precipitate by the addition of cupric chloride. Optimum consumptions of potassium iodide and cupric chloride are also obtained experimentally.  相似文献   

10.
A model of the axial and the radial transmembrane pressure drop in a cylindrical cross-flow filtration module was developed by performing a hydrodynamic analysis of the fluid flow based on the momentum and the continuity equations. Use of this expression for the transmembrane pressure drop together with the resistance model and the concept of shear induced diffusion of the particles at the membrane surface resulted in an expression of the permeate flux. The predictions of the transmembrane pressure drop, the permeate flux and the particles near the membrane surface are discussed for cases with and without the formation of a stagnant layer. The importance of the cylindrical membrane fiber dimensions on the permeate flux is also discussed.  相似文献   

11.
The use of cross flow microfiltration for the separation of aryl acylamide amidohydrolase (amidase) from cell lysate has been investigated. The transmembrane pressure, the feed velocity and the membrane configuration were all found to have significant influence on the transmission of the enzyme through the membrane. Other factors which affect flux and transmission severely are the physical and biochemical properties of the lysate which control the rate of fouling. These, however, are as yet not well characterised. It has been shown that a large amount of amidase is adsorbed to the cell debris which results in a poor enzyme yield. In some cases the apparent membrane transmission of enzyme reaches 154%; this was ascribed to the desorption of the enzyme in a shear field. A model is offered to account for the mechanism of enzyme transmission enhancement.  相似文献   

12.
The formation of membrane sublayers during cross-flow filtration was studied with a standardized E. coli suspension both in a tubular and a flat channel module with different membrane materials. The height of the layers was calculated for different experimental conditions. Transmembrane pressure, cross-flow velocity, compressibility of the suspended particles, properties of the suspension, particle size and concentration were all found to have a significant effect on the formation of membrane sublayers. A decrease of the layer thickness and corresponding filtration resistance with increasing channel length was observed due to the longitudal transmembrane pressure gradient. The filtration resistance of the layer is found to be the dominant factor determining the flux rate.  相似文献   

13.
We propose herein an improved microfluidic system for continuous and precise particle separation. We have previously proposed a method for particle separation called "pinched flow fractionation." Using the previously reported method, particles can be continuously separated according to differences in their diameters, simply by introducing liquid flows with and without particles into a specific microchannel structure. In this study, we incorporated PDMS membrane microvalves for flow rate control into the microfluidic device to improve the separation accuracy. By adjusting the flow rates distributed to each outlet, target particles could be precisely collected from the desired outlet. We succeeded in separating micron and submicron-size polymer particles. This method can be used widely for continuous and precise separation of various kinds of particles, and can function as an important part of microfluidic systems.  相似文献   

14.
Two α-alumina ceramic membranes (0.2 and 0.8 μm pore sizes) and a surface-modified polyacrylonitrile membrane (0.1 μm pore size) were tested with an oily water, containing various concentrations (250–1000 ppm) of heavy crude oil droplets of 1–10 μm diameter. Significant fouling and flux decline were observed. Typical final flux values (at the end of experiments with 2 h of filtration) for membranes at 250 ppm oil in the feed are ≈30–40 kg m−2 h−1. Increased oil concentrations in the feed decreased the final flux, whereas the crossflow rate, transmembrane pressure, and temperature appeared to have relatively little effect on the final flux. In all cases, the permeate was of very high quality, containing <6 ppm total hydrocarbons. The addition of suspended solids increased the final membrane flux by one order of magnitude. It is thought that the suspended solids adsorb the oil, break up the oil layer, and act as a dynamic or secondary membrane which reduces fouling of the underlying primary membrane. Resistance models were used to characterize the type of fouling that occurs. Both the 0.2 μm and the 0.8 μm ceramic membranes appeared to exhibit internal fouling followed by external fouling, whereas external fouling characterized the behavior of the 0.1 μm polymer membrane from the beginning of filtration. Examination of the external fouling layer showed a very thin hydrophobic oil layer adsorbed to the membrane surface. This oil layer made the membrane surface hydrophobic, as demonstrated by increased water-contact angles. The oil layer proved resistant to removal by hydrodynamic (shear) methods. By extracting the oil layer with tetrachloroethylene, followed by IR analysis, its average thickness at the end of a 2 h experiment under typical conditions was determined to be 60 μm for the 0.2 μm ceramic membrane and 30 μm for the 0.1 μm polymer membrane. These measured amounts of oil associated with the membrane at the end of the experiments are in good agreement with those determined from a simple mass balance, in which it is assumed that all of the oil associated with the permeate collected is retained on or in the membrane, indicating that the tangential flow did not sweep the rejected oil layer to the filter exit.  相似文献   

15.
The conventional operating membrane of a laboratory membrane filtration process is to apply controlled transmembrane pressures to the retentate side of the membrane, with the permeate side open ended. Often the minimum transmembrane pressure available is sufficient to cause membrane fouling in a given system. A membrane rig has been built which monitors transmembrane pressure in increments of 0.001 bar and by pumping permeate at a specified rate controls the flux to be constant. The technique used allows sensitive detection of trace fouling. Under a variety of low flux conditions fouling was not observed and it was found to be useful to produce an experimentally related definition of two types of critical flux. In the first definition a `strong form' of critical flux exists if the flux of a suspension is identical to the flux of clean water at the same transmembrane pressure. In the second definition a `weak form' of the critical flux exists if the relationship between transmembrane pressure and flux is linear, but the slope of the line differs from that for clean water. This paper describes how the use of this operating mode led to the successful experimental measurements of critical fluxes for two colloidal silica suspensions, BSA solution and a baker's yeast suspension with a 50k MWCO membrane. These measurements could not be made successfully in constant-pressure mode. The paper also reports experimental evidence in support of a `strong form' of the critical flux for the filtration of X30 silica suspension. Finally, we report the effect of membrane pore size on critical flux measurements for the three types of feed fluids.  相似文献   

16.
Summary Several types of membrane have been tested for use in organic solvent flow field-flow fractionation in an asymmetric channel. The practical problems most commonly encountered were leakage of air and solvent through the support layer on which the membranes are cast, and unequal swelling of the membrane and the support layer in the organic solvent, leading to ridging of the membrane in the channel. Three types of membrane were found suitable for the separation of polystyrene standards with tetrahydrofuran as solvent. The best results were obtained with a fluoropolymer membrane. Fair agreement was found between theory and practice for the dependence of retention times on the relative molecular mass of the standards and on the flow regime. Use of scanning electron microscopy revealed that for a number of the membrane materials some pores were much larger than expected on the basis of the indicated molecular weight cut-off. Whereas these materials could not be used for the fractionation of soluble polymers, they could be applied with some success to the separation of solid latex and silica particles. A PTFE membrane could be used for the separation of latexes and silica particles suspended in acetonitrile as carrier liquid. In general, however, the retention times of these particles were shorter than theoretically predicted.  相似文献   

17.
The main limitation of the ultrafiltration (UF) process identified in drinking water treatment is membrane fouling. Although adsorption of natural organic matter (NOM) is known to cause irreversible fouling, operating conditions also impact the degree of irreversible fouling. This study examined the impact of several operating parameters on fouling including flux, concentrate velocity in hollow fibers, backwash frequency, and transmembrane pressure. A hydrophilic cellulose derivative membrane and a hydrophobic acrylic polymer membrane were used to conduct these tests. Pilot testing showed that when short-term reversible fouling was limited during a filtration cycle by increasing the concentrate velocity, reducing the flux, and increasing the backwash frequency, the evolution of the membrane toward irreversible fouling could be controlled. It appeared that operating parameters should be adjusted to maintain the increase of transmembrane pressure below a certain limit, determined to be approximately 0.85 to 1.0 bar for the tested UF membrane, in order to minimize the rate of irreversible fouling. This threshold for transmembrane pressure was confirmed empirically by compiling data from over 36 pilot studies. Other testing results demonstrated that hydraulic backwash effectiveness decreased as the transmembrane pressure applied in the previous filtration cycle increased. Backwash efficiency in terms of membrane flux recovery after hydraulic backwash was reduced by 50% when the transmembrane pressure was increased from 0.4 bar to 1.4 bar.  相似文献   

18.
The impact of in-line coagulation pre-treatment of secondary effluent on the operation of an immersed hollow-fibre ultrafiltration membrane pilot was evaluated as part of a larger study on optimising phosphorus removal. The efficacy of alum and ferric chloride was investigated, with an emphasis on alum use. Both coagulants were found to shift the particle-size distribution of organic matter in the feed towards larger fractions, with a notable reduction in colloidal matter. This was reflected in a reduction of both average daily transmembrane pressure increases, as well as a reduction of transmembrane pressure increases within backpulse intervals. Fouling reduction was observed with both lower and higher membrane packing density modules (membrane surface areas of 55.7 and 62.7 m2/module). The results of one-way analysis of variance (ANOVA) testing indicate that for this pilot system, chemical pre-treatment and solids concentrations in the feed water played a statistically significant role in determining transmembrane pressure variations. Membrane packing density and membrane production method did not exhibit a statistically significant effect on transmembrane pressure under the conditions of this study.  相似文献   

19.
Yamada M  Seki M 《Lab on a chip》2005,5(11):1233-1239
We propose here a new method for continuous concentration and classification of particles in microfluidic devices, named hydrodynamic filtration. When a particle is flowing in a microchannel, the center position of the particle cannot be present in a certain distance from sidewalls, which is equal to the particle radius. The proposed method utilizes this fact, and is performed using a microchannel having multiple side branch channels. By withdrawing a small amount of liquid repeatedly from the main stream through the side channels, particles are concentrated and aligned onto the sidewalls. Then the concentrated and aligned particles can be collected according to size through other side channels (selection channels) in the downstream of the microchannel. Therefore, continuous introduction of a particle suspension into the microchannel enables both particle concentration and classification at the same time. In this method, the flow profile inside a precisely fabricated microchannel determines the size limit of the filtered substances. So the filtration can be performed even when the channel widths are much larger than the particle size, without the problem of channel clogging. In this study, concentrations of polymer microspheres with diameters of 1-3 microm were increased 20-50-fold, and they were collected independently according to size. In addition, selective enrichment of leukocytes from blood was successfully performed.  相似文献   

20.
在线性或交联的聚氨酯粒子内原位还原制备纳米银粒子   总被引:5,自引:0,他引:5  
纳米金属粒子有特异性质 ,可用作高效催化剂、非线性光学材料等 .为防止其聚集 ,不少研究者采用表面活性剂 [1]、配位体 [2 ]和高分子等以阻止纳米金属粒子的聚集 .近年来高分子金属复合纳米粒子引起人们广泛的兴趣 [3~ 9] .文献上大多采用线性或嵌段双亲高分子作纳米金属的分散稳定剂[6 ] 或在高分子粒子表面沉积纳米金属粒子[5] ,也有人采用多孔交联高分子微球的孔洞作为微反应器形成纳米金属粒子[7] .这些方法均不能有效地控制金属粒子的粒径 ,特别难以合成粒径小于 3 0 nm的银粒子 .本文首次报道了在常温处于粘弹态 ,线性或交联的高分…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号