首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xiaohong Hou 《Tetrahedron》2005,61(24):5866-5875
The versatility of the 4-(N,N-dimethylamino)benzoate (DMAB) group embedded in host 1 as a signaling subunit for anion recognition was elucidated in terms of 1H NMR, CD, and fluorescence studies. Host 1 showed 1:1 complexation with monovalent anions and stepwise 1:1 and 2:1 (host 1: anion) complexation with divalent phosphate anions. The binding constants between host 1 and anions were determined by means of 1H NMR titrations in CD3CN (HPO42−: log K1:1=6.2, log K2:1=4.9; H2P2O72−: log K1:1=4.4, log K2:1=1.8; AMP2−: log K1:1>7, log K2:1>5) and the affinity of host 1 toward divalent anions, HPO42−, H2P2O72−, and AMP2−, is stronger than that toward monovalent anions, NO3, BF4, ClO4, HSO4, and PF6. The CD exciton chirality studies of host 1 with divalent anions, HPO42− and AMP2−, revealed that the two DMAB groups in the 2:1 complexes were arranged with negative chirality (counterclockwise). The dual fluorescence behavior of the DMAB group demonstrated not only the complexation stoichiometry but also the role(s) of the lipophilic countercation such as tetrabutylammonium and/or the hydrophilic residue in AMP during anion recognition.  相似文献   

2.
An artificial anion receptor is presented, in which two cyclohexapeptide subunits containing l-proline and 6-aminopicolinic acid subunits in an alternating sequence are connected via an adipinic acid spacer. This compound was devised to stabilize the 2:1 sandwich-type anion complexes that are observed when the two cyclopeptide moieties are not covalently connected and to obtain a 1:1 stoichiometry for these aggregates. Electrospray ionization mass spectrometry and NMR spectroscopic investigations showed that the bridged bis(cyclopeptide) does indeed form defined 1:1 complexes with halides, sulfate, and nitrate. ROESY NMR spectroscopy and molecular modeling allowed a structural assignment of the sulfate complex in solution. The stabilities of various anion complexes were determined by means of NMR titrations and isothermal titration microcalorimetry in 50% water/methanol. Both methods gave essentially the same quantitative results, namely stability constants that varied in the range 105-102 M-1 and decreased in the order SO42- > I- > Br- > Cl- > NO3-. This order was rationalized in terms of the size of the anions with the larger anions forming the more stable complexes because they better fit into the cavity of the host. The ability of sulfate to form stronger hydrogen bonds to the NH groups of the receptor, in addition to its slightly larger ionic radius with respect to iodide, causes the higher stability of the sulfate complex. No significant effect of the countercation on complex stability was observed. Furthermore, complex stability is enthalpically as well as entropically favored. A comparison of the iodide and sulfate complex stabilities of the ditopic receptor with those of a cyclopeptide that forms 1:1 anion complexes in solution showed that the presence of a second binding site increases complex stability by a factor of 100-350.  相似文献   

3.
The complexation behavior, binding properties, and spectral parameters of supramolecular chirality induction in the achiral host molecule, syn (face-to-face conformation) ethane-bridged bis(zinc porphyrin), upon interaction with chiral bidentate guests (diamines and amino alcohols) have been studied by means of UV-vis, CD, fluorescence, (1)H NMR, and ESI MS techniques. It was found that the guest structure plays a decisive role in the chirogenesis pathway. The majority of bidentate ligands (except those geometrically unsuitable) exhibit two major equilibria steps: the first guest ligation leading to formation of the 1:1 host-guest tweezer structure (K(1)) and the second guest molecule ligation (K(2)) forming the anti bis-ligated species (1:2). The second ligation is much weaker (K(1) > K(2)) due to the optimal geometry and stability of the 1:1 tweezer complex. The enhanced conformational stability of the tweezer complex ensures an efficient chirality transfer from the chiral guest to the achiral host, consequently inducing a remarkably high optical activity in the bis-porphyrin.  相似文献   

4.
New linear host (1) and cyclic hosts (2 and 3), which have galactopyranose skeletons as chiral origins and oxyethylenes skeletons as binding sites, were designed based on the structural features extracted from the fructo-oligosaccharide derivatives, having a large chiral discrimination ability, and were then synthesized. These hosts showed chiral discrimination toward chiral organic ammonium salts. For example, the chiral discrimination ability (the ratio of association constants: K(R)/K(S)) of host 1, which has the highest value among them, was K(R)/K(S) = 3 for Trp-O-(i)Pr(+) and K(R)/K(S) = 0.7 for 1-(1-naphthyl)ethylammonium (NEA(+)) at 298 K in CHCl(3). It was clarified that host 1 changed the conformation from a linear structure to the pseudo-ring structure by complexation with cations such as alkali metallic ions and chiral organic ammonium ions. The (1)H NMR induced shifts of host 1 by adding the NEA(+) guests showed that the host-guest complex structures are clearly different, depending upon the chirality of the guest; in the complex with (R)-NEA(+), the naphthyl group of the guest is located above the oxyethylene skeleton of the host and in the complex with (S)-NEA(+), and the naphthyl group is located between the edges of the pseudo-ring of the host. The clearly different structure of the complex of host 1 with NEA(+) may be caused by the dynamic molecular recognition, thus the induced-fitting mechanism.  相似文献   

5.
Two isomeric structures of meso-tetramethyltetrakis(3-hydroxyphenyl)calix[4]pyrrole, 4-alphaalpha betabeta and 4-alphabeta alphabeta, have been isolated and characterized by 1H NMR in different solvents (CD3CN, CD3OD, and DMSO-d6) at 298 K. Standard Gibbs energies of solution derived from solubility data in various solvents were used to calculate the transfer Gibbs energy, delta(t)G(o), of these ligands using acetonitrile as the reference solvent. These results are consistent with the 1H NMR studies in different media that show chemical shift changes observed in the resonances of the NH and the OH protons of these ligands. Solvate formation was observed when these isomers were exposed to saturated atmosphere of N,N-dimethylformamide, dimethyl sulfoxide and propylene carbonate. Anion interaction involving 4-alphaalpha betabeta and 4-alphabeta alphabeta was investigated by 1H NMR in CD3CN while the complex composition was assessed through conductance measurements. Significant differences are observed in the affinity of these ligands for anions as well as in the composition of the fluoride complexes. Thus 4-alphaalpha betabeta shows selectivity for H2PO4(-) in acetonitrile while its isomer 4-alphabeta alphabeta is selective for the fluoride anion. Again the complex composition is altered for the fluoride anion when complexed with 4-alphaalpha betabeta in acetonitrile (1:1 complex) relative to 4-alphabeta alphabeta in the same solvent. The latter isomer shows an enhanced hosting ability for this anion. Thus two anions are taken up per unit of ligand. The thermodynamics of complexation of H2PO4(-) and these ligands in acetonitrile is discussed, and the results are compared with those involving calix[4]pyrrole and this anion in this solvent. It is shown that the isomers interact with two H2PO4(-) anions while one calix[4]pyrrole unit interacts with this anion. This paper demonstrates for the first time that the enthalpy parameter may be a suitable reporter of the number of hydrogen bonds formed when calix[4]pyrrole and its derivatives interact with the dihydrogen phosphate anion in acetonitrile. In moving from acetonitrile to N,N-dimethylformamide, 4-alphaalpha betabeta is unable to enter complexation with most anions, except fluoride, with which the formation of a 1:2 (ligand:anion) complex is demonstrated. The rather versatile behavior of these receptors for anions is explained on the basis of 1H NMR evidence and solvation effects. These investigations highlight the importance of the medium effect on the stability of the complex and reflect the inherent nature of the solvent and its highly significant involvement in the complexation process.  相似文献   

6.
The chloride‐templated synthesis of a novel [3]rotaxane, capable of binding anionic guests, and incorporating a naphthalene group for fluorescence sensing is reported. Extensive 1H NMR titration studies were used to probe the anion binding selectivity of the system. The rotaxane selectively recognises sulfate, undergoing an induced conformational change upon sulfate binding to form a 1:1 stoichiometric sandwich‐type complex, concomitant with significant quenching of the fluorescence. Binding of mono‐anionic guests results in the formation of a 2:1 stoichiometric guest–host complex, and a modest enhancement of the emission. Addition of an excess of sulfate in non‐competitive solvent also results in a 2:1 emissive complex.  相似文献   

7.
Novel photoswitchable chiral hosts having an axis chiral 2,2'-dihydroxy-1,1'-binaphthyl (BINOL)-appended stiff-stilbene, trans-(R,R)- and -(S,S)-1, were synthesized by palladium-catalyzed Suzuki-Miyaura coupling and low-valence titanium-catalyzed McMurry coupling as key steps, and they were fully characterized by various NMR spectral techniques. The enantiomers of trans-1 showed almost complete mirror images in the CD spectra, where two split Cotton effects (exciton coupling) were observed in the beta-transitions of the naphthyl chromophore at 222 and 235 nm, but no Cotton effect was observed in the stiff-stilbene chromophore at 365 nm. The structures of (R)-10 and trans-(R,R)-1 were confirmed by X-ray structural analysis. The optimized structure of cis-1 by MO calculations has a wide chiral cavity of 7-8 A in diameter, whereas trans-1 cannot form an intramolecular cavity based on the X-ray data. Irradiation of (R,R)-trans-1 with black light (lambda = 365 nm) in CH3CN or benzene at 23 degrees C led to the conversion to the corresponding cis-isomer, as was monitored by 1H NMR, UV-vis, and CD spectra. At the photostationary state, the cis-1/trans-1 ratio was 86/14 in benzene or 75/25 in CH3CN. On the other hand, irradiation of the cis-1/trans-1 (75/25) mixture in CH3CN with an ultra-high-pressure Hg lamp at 23 degrees C (lambda = 410 nm) led to the photostationary state, where the cis-1/trans-1 ratio was estimated to be 9/91 on the basis of the 1H NMR spectra. The cis-trans and trans-cis interconversions could be repeated 10 times without decomposition of the C=C double bond. Thus, a new type of photoswitchable molecule has been developed, and trans-1 and cis-1 were quite durable under irradiation conditions. The guest binding properties of the BINOL moieties of trans- and cis-(R,R)-1 with F-, Cl-, and H2PO4- were examined by 1H NMR titration in CDCl3. Similar interaction with F- and Cl- was observed in trans-1 (host/guest = 1/1, Kassoc = (1.0 +/- 0.13) x 103 for F- and (4.6 +/- 0.72) x 102 M-1 for Cl-) and cis-1 (host/guest = 1/1, Kassoc = (1.0 +/- 0.13) x 103 for F- and (5.9 +/- 0.69) x 10 M-1 for Cl-), but H2PO4- interacted differently: the cis-isomer formed the 1/1 complex (Kassoc = (9.38 +/- 2.67) x 10 M-1), whereas multistep equilibrium was expected for the trans-isomer.  相似文献   

8.
1,3-Dipyrrolyl-1,3-propanediones, synthesized from pyrroles and malonyl chloride, form BF2 complexes, which represent a new class of naked-eye sensors for halide and oxoanions. The association mode for the interactions of both the pyrrolyl NH and bridging CH protons with anions was confirmed by 1H NMR chemical shifts in CD2Cl2 and supported by theoretical studies. The binding constants (Ka) were estimated as 8.1x10(4), 2.0x10(3), 3.3x10(2), 1.3x10(4), and 80 M(-1) for F-, Cl-, Br-, H2PO4(-), and HSO4(-) by UV/Vis absorption spectral changes in CH2Cl2. Augmentation of Ka compared with dipyrrolylquinoxaline for H2PO4(-) is much larger than those for other anions. Contrary to other anions, F- quenches the emission almost completely, which was detected by the fluorescence spectrum as well as the naked-eye. In the case of the chloride anion complex, the formation of Cl(-)-bridged 1D networks, in which anion is associated with two BF2 complexes, is observed in the solid state.  相似文献   

9.
The stability constant (K), standard free energy (Delta G degrees), enthalpy (Delta H degrees), and entropy changes (T Delta S degrees) for the complexation of 6-amino-6-deoxy-beta-cyclodextrin with more than 50 negatively or positively charged as well as neutral guests, including 22 enantiomer pairs, have been determined in aqueous phosphate buffer (pH 6.9) at 298.15 K by titration microcalorimetry. The thermodynamic parameters obtained in this study and the relevant data for native beta-cyclodextrin indicate that the complexation and chiral discrimination behavior of the cationic host with charged guests are governed by the critical counterbalance between the electrostatic interactions of the charged groups in host and guest and the conventional intracavity interactions of the hydrophobic moiety of guest, such as hydrophobic, van der Waals, solvation/desolvation, and hydrogen-bonding interactions.  相似文献   

10.
A tripodal tris(urea) ligand with 2,2'-bipyridyl (bpy) substituents (L) has been designed and synthesized, which coordinates with three equivalents of Ru(bpy)(2)Cl(2)·2H(2)O, followed by treatment with NH(4)PF(6), to afford the anion receptor [(bpy)(6)Ru(3)L](PF(6))(6) (1). The anion-binding behavior of the ligand L and the Ru(II)-bpy functionalized receptor 1 toward different anions was investigated by (1)H NMR (for L and 1), fluorescence, and UV-vis spectroscopy (for 1). Both compounds showed selective recognition of SO(4)(2-) or H(2)PO(4)(-) ions in the 1:1 binding mode in the NMR studies. The Ru(II) complex 1 displayed the metal-to-ligand charge transfer emission at 600 nm, which was quenched on addition of the sulfate and dihydrogen phosphate ions. Quantitative fluorescence titration experiments were carried out and the stability constants (log K) of the complex 1 with SO(4)(2-) and H(2)PO(4)(-) ions were obtained to be 4.73 and 4.69 M(-1) (1:1 binding mode), respectively.  相似文献   

11.
The hexadentate, and ditopic ligand 2,5-bis([2,2']bipyridin-6-yl)pyrazine yields a chiral, tetrameric, square-shaped, self-assembled species upon complexation with Fe2+ ions. The racemate of this complex was resolved with antimonyl tatrate as the chiral auxiliary. The purity of the enantiomer was determined by NMR spectroscopy, by using a chiral, diamagnetic shift reagent, and by circular dichroism (CD). The CD spectrum was also calculated by time-dependent density functional theory, and the correlation that was found between CD spectrum and configuration was confirmed by X-ray cristallography. When a "chiralised" version of the ligand was used instead, the corresponding iron complex was obtained in diastereomerically pure form.  相似文献   

12.
The synthesis and metal complexation of chiral depsipeptide dendrimers 3 and 7 containing an ethylenediaminetetraacetic acid (EDTA) ester-derived core is reported. The EDTA ester cavity of these dendrimers selectively complexes Zn(2+) and Cu(2+) ions leading to diastereoselective folding. To elucidate the coordination motif in the resulting "foldamers" of 3-ZnCl(2), 7-ZnCl(2), 3-CuCl(2), and 7-CuCl(2), the coordination behavior of the tetramethyl ester of EDTA (8) has been investigated as a model case. The corresponding complexes 8-ZnCl(2) and 8-CuCl(2) have been structurally characterized by (1)H NMR spectroscopy and X-ray analysis. The complexes involve the inherently chiral octahedral cis-alpha coordination motif, in which 8 serves as a tetradentate ligand. In the case of the Zn(II) complex 8-ZnCl(2), both Deltacis-alpha(S,S,lambda) and Lambdacis-alpha(R,R,lambda) stereoisomers were found in the unit cell. For the Cu(II) complex 8-CuCl(2), only one stereoisomer, namely Deltacis-alpha(S,S,lambda) was found in the crystal under investigation. (1)H NMR spectroscopy has shown that the same coordination motif is diastereoselectively formed in the chiral Zn(2+) dendrimers 3-ZnCl(2) and 7-ZnCl(2). Likewise, the calculated CD spectrum of the Deltacis-alpha(S,S,lambda) stereoisomer of the model complex 8-CuCl(2) shows good agreement with the experimental spectrum of the Cu(II) dendrimers 3-CuCl(2) and 7-CuCl(2), allowing assignment of the absolute configurations of the preferred foldamers as Lambdacis-alpha(R,R,lambda) for 3-CuCl(2) and Deltacis-alpha(S,S,lambda) for 7-CuCl(2). This work represents the first example of metal-complexation-mediated diastereoselective folding of chiral dendrimers with known absolute configuration.  相似文献   

13.
[structure: see text] The mechanism for formation of extremely stable 1:2 inclusion complexes of water-soluble meso-tetraarylporphyrins with heptakis(2,3,6-tri-O-methyl)-beta-cyclodextrin (TMe-beta-CD) in aqueous solutions has been studied by means of NMR spectroscopy and isothermal titration calorimetry. To simplify the system, 5,10,15-tris(3,5-dicarboxylatophenyl)-20-phenylporphyrin (1) was used as a guest porphyrin, because 1 forms only a 1:1 inclusion complex with cyclodextrin (CD). As host compounds, native beta-CD and the O-methylated-beta-CDs such as heptakis(2,3-di-O-methyl)- (2,3-DMe-beta-CD), heptakis(2,6-di-O-methyl)- (2,6-DMe-beta-CD), and TMe-beta-CDs were used. The thermodynamic parameters for complexation such as binding constants (K) and enthalpy (DeltaH degrees ) and entoropy changes (DeltaS degrees ) were determined by means of isothermal titration calorimetry. The K value for complexation of 1 with CD increases in the order beta-CD (K = (1.2 +/- 0.1) x 10(3) M(-)(1)) < 2,6-DMe-beta-CD ((1.2 +/- 0.1) x 10(4) M(-)(1)) < TMe-beta-CD ((6.9 +/- 0.4) x 10(6) M(-)(1)) < 2,3-DMe-beta-CD ((8.5 +/- 0.5) x 10(6) M(-)(1)), indicating participation of the secondary OCH(3) groups in extremely strong complexation of 1 with CD. Complex formation of 1 with beta-CD and 2,6-DMe-beta-CD is an enthalpically and entropically favorable process, while that with TMe-beta-CD and 2,3-DMe-beta-CD is an enthalpically much more favorable but an entropically less favorable process. The thermodynamic parameters suggest that inclusion of 1 into the cavities of TMe-beta-CD and 2,3-DMe-beta-CD is promoted by van der Waals interactions, which are stronger than those in the cases of beta-CD and 2,6-DMe-beta-CD. (13)C NMR spectra show that the conformations of both TMe-beta-CD and 2,3-DMe-beta-CD are altered upon inclusion of 1, while those of beta-CD and 2,6-DMe-beta-CD are mostly retained. On the basis of these results, it can be concluded that induced-fit type complexation of 1 with TMe-beta-CD and 2,3-DMe-beta-CD causes extremely strong binding of the host to the guest.  相似文献   

14.
The self-assembly of chiral depsipeptide dendrons 4, which contain a cyanuric acid building block at their focal point, with the homotritopic Hamilton receptor 1 is reported. The 1:3 compositions of the resulting chiral supramolecular dendrimers, the association constants K(n), and the cooperativity of binding expressed by Scatchard plots and the Hill coefficients n(H) was determined by NMR titration experiments. The most pronounced positive cooperativity was found for the complexes 1 L(3) with L being the second-generation dendrons 4 c-e. The least stable complexes are formed with the bulky third-generation dendrons 4 f-h. Similar results are obtained by the corresponding complexation of the achiral Frechét-type first- to third-generation dendrons 3 with 1. Chiroptical investigations of 1:3 complexes of 1 and 4 reveal chirality transfer from the dendron to the Hamilton receptor as demonstrated by the appearance of new CD absorption bands at 310 nm.  相似文献   

15.
The stability constants (K) and the standard free energy (deltaG degrees ), enthalpy (deltaH degrees ), and entropy changes (deltaS degrees ) for the complexation of gamma-cyclodextrin with 34 enantiomeric and diastereomeric N-acetyl- and N-carbobenzyloxy-d/l-dipeptides with two aromatic moieties were determined in aqueous buffer solution at 298.15 K by titration microcalorimetry. Chiral recognition of the enantiomeric dipeptide pairs by gamma-cyclodextrin was found to be fairly poor, exhibiting only small percentage differences in K, while the diastereomeric dipeptides were discriminated to much greater extent with affinity differences of up to 6-7 times. The complex structures of several selected pairs were elucidated by NMR techniques. Combining the microcalorimetric and NMR data, the complexation and chiral recognition behavior of gamma-cyclodextrin is discussed in particular in terms of the length, bulkiness, and flexibility of the tether connecting the two aromatic moieties in a guest.  相似文献   

16.
The synthesis and anion-recognition properties of two new porphyrin-functionalised [2]rotaxane host molecules are described. The rotaxane compounds are prepared via a chloride-anion-templated clipping strategy. (1)H NMR titration experiments demonstrate that the rotaxane host systems exhibit high binding affinities and general selectivities for chloride anions in DMSO-d(6) or CDCl(3)/CD(3)OD solvent systems. UV-visible and fluorescence spectroscopy experiments reveal that the rotaxane receptors are ineffective as optical anion sensors. However, both receptors are shown to be capable of detecting chloride anions electrochemically via cathodic shifts in the porphyrin P/P(+) redox couples.  相似文献   

17.
The synthesis, anion binding, and conformational properties of a series of 3-aminopyridinium-based, tripodal, tricationic hosts for anions are described. Slow anion and conformational exchange on the (1)H NMR time scale at low temperature, coupled with NMR titration, results in a high level of understanding of the anion-binding properties of the compounds, particularly with respect to significant conformational change resulting from induced fit complexation. Peak selectivity for halides, particularly Cl(-), is observed. The approach has been extended to dipodal and tripodal podands based on 3-aminopyridinium "arms" containing photoactive anthracenyl moieties. The 1,3,5-tripodal host shows a remarkable selectivity for acetate over other anions, in contrast to the analogous unsubstituted tris(3-aminopyridinium) analogue, despite the fact that low-temperature (1)H NMR experiments reveal a total of four acetate-binding conformations. Photodimerization of anthracene units results in the formation of potential fluorescent anion sensors.  相似文献   

18.
The complexes of cyclohexylacetic acid and cholic acid with beta-cyclodextrin were studied by NMR diffusion coefficient measurements. The diffusion coefficient of the 1:1 cyclohexylacetic acid/beta-cyclodextrin complex, K(a) = 1800 +/- 100 M(-1), is slightly slower (3.23 +/- 0.07 x 10(-6) cm(2) s(-1)) than that of beta-cyclodextrin (3.29 +/- 0.07 x 10(-6) cm(2) s(-1)). The diffusion coefficient of the 1:1 cholic acid/beta-cyclodextrin complex, K(a) = 5900 +/- 800 M(-1), is significantly slower (2.93 +/- 0.07 x 10(-6) cm(2) s(-1)) than that of beta-cyclodextrin. The results indicate that caution should be exercised when studying host-guest complexation by the so-called 'single point' technique. A novel data treatment is introduced which takes into account the diffusion behavior of all of the species when determining K(a). Experimentally determined diffusion coefficients of complexes are also a useful probe of the size of host-guest complexes.  相似文献   

19.
Two chiral fluorescence receptors (1, 2) were synthesized, and their structures were characterized by IR, ^1H NMR, ^13C NMR, mass spectra and elemental analysis. The chiral recognition of receptors was studied by ^1H NMR and fluorescence spectra. The results demonstrate that receptors and dibenzoyl tartrate anion formed a 1 : 1 complex. The receptor 1 exhibited a good enantioselective recognition ability toward the enantiomers of dibenzoyl tartrate anion.  相似文献   

20.
A new fluorescent probe 9,10-bis[1-(2-naphthalenylbenzimidazolium)-3-methyl]anthracene 1 has been synthesized which shows highly selective fluorescence quenching with only acetate ions in 90% aqueous buffer at pH 7.4. The structure optimization (DFT) of probe 1 and its 1:1 complex with acetate anion, shows that probe 1 is pre-organized and has to undergo minimal spatial reorganization during complexation with acetate anion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号