首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The solid solution with formula Bi1.5Sb1.5−xNbxMnO7 has been synthesized using the ceramic method at 1000 °C. This solid solution was crystallized in the pyrohlore structure in cubic lattice with Fd-3 m space group. The cell parameter increases linearly with increase in the niobium concentration. The magnetic susceptibility measurements achieved between 4 and 300 K show a paramagnetic behaviour with an effective moment 5.84 μβ for Bi1.5Sb1.5MnO7 compound (x = 0) and 5.61 μB for Bi1.5Nb1.5MnO7 compound (x = 1.5) indicating “ + 2” oxidation state for manganese ion. The electric conductivity measured using the complex impedance spectroscopy method put in evidence an increase of the electric conductivity with the temperature, and the antimony compound is slightly more conductor than the niobium compound; results indicate electronic conductivity with semi-conducting behaviour.  相似文献   

2.
Nanosized Fe2O3 clusters are pillared in the interlayer spaces of layered perovskites, H1−xLaxCa2−xNb3O10 (0≤x≤0.75) by a guest-exchange reaction using the trinuclear acetato-hydroxo iron cation, [Fe3(OCOCH3)7 OH·2H2O]+. The interlayer spaces of niobate layers are pre-expanded with n-butylammonium cations (n-C4H9NH+3), which are subsequently replaced by bulky iron pillaring species to form Fe(III) complex intercalated layer niobates. Upon heating at 380°C, the interlayered acetato-hydroxo iron complexes are converted into Fe2O3 nanoclusters with a thickness of ca. 3.5 Å irrespective of the interlayer charge density (x). The band-gap energy of the Fe2O3 pillars (Eg2.25 eV) is slightly larger than that of bulk Fe2O3 (Eg2.20 eV) but is smaller than that expected for such a small-sized semiconductor, which can be assigned to the pancake-shaped Fe2O3 pillars of 3.5 Å in height with comparatively large lateral dimension. X-ray absorption spectroscopic measurements at the Fe K-edge are carried out in order to obtain structural information on the Fe2O3 pillars stabilized between the niobate layers. XANES analysis reveals that the interlayer FeO6 octahedra have coordination environments similar to that of bulk α-Fe2O3, but noncentrosymmetric distortion of interlayered FeO6 is enhanced due to the asymmetric electric potential exerted by the negatively charged niobate layers. Scanning electron microscopic observation and nitrogen adsorption–desorption isotherm measurement suggest that the pillared derivatives are nanoporous materials with the highest BET specific surface area of ca. 116 m2/g.  相似文献   

3.
The compositions in the YBa2−xLaxCu3O7−δ (0x0.2) system were prepared by the solid state reaction, employing a novel high-temperature oxygen sintering route. The modified sintering route yields dense slab like microstructures with large grains. The decomposition (incongruent melting) temperature of the YBa2Cu3O7−δ (Y-123) phase was found to shift to higher temperatures with increasing oxygen partial pressure and lanthanum content. Structure remained orthorhombic up to x=0.2 with a decrease in the orthorhombic strain ((ba)/b). Iodometric titration indicated a systematic increase in the oxygen content with increasing lanthanum content. Thermo-gravimetric studies in various oxygen partial pressures revealed that the oxygen diffusion in to the YBa2Cu3O7−δ (δ>0.5) lattice is an exothermic event and takes place at temperatures not less than 573 K. High-temperature thermal-expansion measurements in air indicated that the nonlinearity in thermal expansion behaviour was reduced by the substitution of lanthanum.  相似文献   

4.
Structural analyses as well as low temperature thermal conductivity is reported for the binary phase Na1−xGe3+z. Specimens were characterized by thermal analysis, conventional and synchrotron powder X-ray diffraction, neutron powder diffraction, 23Na nuclear magnetic resonance spectroscopy, and electrical and thermal transport measurements. With structural characteristics qualitatively analogous to some aluminum-silicate zeolites, the crystal structure of this phase exhibits an unconventional covalently bonded tunnel-like Ge framework, accommodating Na in channels of two different sizes. Observed to be non-stochiometric, Na1−xGe3+z concurrently exhibits substantial structural disorder in the large channels and a low lattice thermal conductivity, of interest in the context of identifying novel low thermal conductivity intermetallics for thermoelectric applications.  相似文献   

5.
Li4Ti5O12 (LTO)/carbon nanotubes (CNTs) composite material is synthesized based on a solid-state method by sand-milling, spray-drying and calcining at 850 ℃ under N2 flow. The LTO/CNTs samples with 1 wt% and 3 wt% weight ratio of CNTs addition and the pristine LTO sample are prepared. The rate performance and the thermal stability of these samples are investigated based on LiMn2O4 (LMO)/LTO full-cell. The results show that theweight ratio of CNTs addition has distinct effect on LTO performances. The composite materials of LTO composited CNTs have better performance at high-rate due to the intercalation enhancement by conductive network of CNTs. At second, the overcharging temperature response of the cell's surface with 1 wt% CNTs addition is the lowest. The particle size distribution is measured and the most uniform particles are obtained with 1 wt% CNTs addition. This trend could explain that the mediumquantity of CNTs is optimal to improve the heat and mass transfer and prevent the problems of crystallite growing interference and aggregation during the calcination process.  相似文献   

6.
Through the construction of the Ba4Nb2−xTaxO9 phase diagram, it was discovered that the unique high-temperature γ phase is a thermodynamic intermediate between the low-temperature α phase (Sr4Ru2O9-type) and a 6H-perovskite. Refined site occupancies for the γ phase across the Ba4Nb2−xTaxO9 solid-solution indicate that Nb preferentially occupies the tetrahedral sites over the octahedral sites in the structure. When annealed in a CO2-rich atmosphere, all of the phases studied absorb large amounts of CO2 at high temperatures between ∼700 and 1300 K. In situ controlled-atmosphere diffraction studies show that this behaviour is linked to the formation of BaCO3 on the surface of the material, accompanied by a Ba5(Nb,Ta)4O15 impurity phase. In situ diffraction in humid atmospheres also confirms that these materials hydrate below , and that this plays a critical role in the various reconstructive phase transitions as well as giving rise to proton conduction.  相似文献   

7.
Polycrystalline samples of Cu2+xTa4O12+δ were prepared by solid-state reactions. Copper tantalate shows a remarkable compositional flexibility with respect to both the copper and oxygen stoichiometry. Single phase compounds could be synthesised for 0.125 ≤ x ≤ 0.5. Slowly cooled samples are green and possess a pseudo-tetragonal unit cell, which changes to a pseudo-cubic symmetry for x ≥ 0.45. Rapidly cooled aliquots are brown and have a (pseudo-) cubic structure. For both the slow-cooled and quenched samples a linear increase of the oxygen content with x was observed, the values of δ for the latter being significantly smaller. Magnetic measurements reveal a ferrimagnetic transition at 12.5 K, the strength of which is strongly reduced both by increasing the copper content and by quenching.  相似文献   

8.
The structure of the recently reported transparent conductor, Ga3−xIn5+xSn2O16(0.3<x<1.6), was established by a combination of high-resolution electron microscopy, convergent-beam electron diffraction, and Rietveld analysis of powder diffraction data (X-ray and time-of-flight neutron methods). This “T-phase” compound has an anion-deficient fluorite-derivative structure whose space group isI41/a. Although there are similarities to the parent oxide structures, the T-phase lacks one of the distorted InO6octahedra observed in In2O3, which may account for its inability to be donor-doped by Sn.  相似文献   

9.
The structural transition in the La2−xNdxCuO4system is studied through thex=0.45, 0.5 compositions, using neutron powder diffraction. Both compositions could be refined as biphasic systems represented by theI4/mmmand theAbmaspace groups. The presence of T and T′ phases could be observed in both compositions. The apical oxygen atom in the copper coordination octahedron can be regarded as the key for structural distortion causing the transition from T to T′ structures.  相似文献   

10.
Crystallographic studies of the Ba–Pt–O system have been undertaken using X-ray and electron diffraction techniques. The system is described by means of a Bap(BaxPt2+1−x)Pt4+p−2O3p−3formula which corresponds to a BaO3hexagonal based framework with Pt chains, whereprepresents the oxygen deficiency and the presence of both Pt4+and Pt2+cations in the compounds, andxa possible substitution of Pt2+by Ba2+in trigonal prismatic sites. The structure of a Ba4(Ba0.04Pt2+0.96)Pt4+2O9crystal has been solved by using 5548 X-ray difraction reflections collected on a twinned crystal. Refinements were performed with two distinct models: an “average”P321 space group and an “orthorhombic”C2 space group with cell parametersa=17.460(4) Å,b=10.085(2) Å,c=8.614(3) Å. In this structure, two Pt4+and one Pt2+cations are distributed over four Ba planes and form chains along thecaxis, consisting of two face-sharing Pt4+O6octahedra connected with one Pt2+O6trigonal prism. A lattice misfit occurs between the rigid barium lattice and the PtO3chains, giving rise to a composite structure. Twinning and domain configurations are described and taken into account in the refinement. This twinning is related to the presence of Pt2+cations, whose positions break the threefold axis symmetry. A diffraction anomalous fine structure (DAFS) study was also performed on this twinned single crystal. Anomalous scattering factorsf′ andf″ for platinum in this crystal were refined near the LIIIPt absorption edge. They confirm the weak barium occupancy of the trigonal prismataic site and the Pt4+valence of the octahedral sites. Reflection overlaps, due to twinning, flatten the DAFS sensitivity to Pt atoms in the prismatic sites and did not allow their clear valence determination, but Pt–O bond lengths agree with the presence of Pt2+cations at the center of prismatic faces. Electron diffraction patterns of powders having slightly different composition show a continuous evolution of incommensurate Bragg peaks and a weak correlation between the PtO3chains. They also confirm the composite nature and the one-dimensionality of the Bap(BaxPt2+1−x)Pt4+p−2O3p−3series, which can produce highly anisotropic physical properties.  相似文献   

11.
This study compares the thermal stability of different wood species, which is an important factor for the production of wood–polymer composites (WPCs), and investigates the effect of extraction on thermal properties. The chemical composition of four wood species – Quercus alba, Pinus radiata, Eucalyptus grandis and Acacia cyclops – has been determined, as the species is expected to affect the thermal stability of wood. Subsequently, the hot-water (HW) extractives, ethanol/cyclohexane (E/C) extractives and both extractives were eliminated from the wood via Soxhlet extraction and the thermal stability of the wood determined with thermogravimetric analysis (TGA) under identical conditions. The results suggest that a higher cellulose and lignin content leads to better thermal stability of wood in different temperature regimes. In all cases, the removal of extractives improved the thermal stability of the wood. The effect of combined extractions was more pronounced than of an individual extraction and E/C-extraction caused less improvement in the thermal stability of wood than HW extraction. The degradation of the investigated wood extractives occurred at low rates over a broad temperature range. Pure cellulose exhibited superior thermal stability compared to wood, but differences were observed between the investigated wood species.  相似文献   

12.
Rietveld refinement of combined X-ray and neutron diffraction data has, within errors, confirmed the stoichiometries of two, cubic pyrochlore phases in the ZnOBi2O3Sb2O5 system. Neither phase has the ‘ideal’ stoichiometry, Zn2Bi3Sb3O14. One phase, P1, is a Zn-rich, Bi-deficient solid solution Zn2+xBi2.96−(xy)Sb3.04−yO14.04+δ. The other, P2, is a Bi-rich line phase, stoichiometry Zn2Bi3.08Sb2.92O14+δ. Both structures have a mixture of Bi, Zn on the A-sites and Zn, Sb on the B-sites. However, Zn is displaced off-centre in the A-sites to achieve lower co-ordination number with realistic ZnO bond lengths. Additional structural complexities arise from: displacement of O(2) atoms; partial occupancies of O(1) and O(2) sites; partial occupancy of a third, interstitial oxygen site, O(3). Since the multiplicities of the off-centre sites are much higher than those of the ideal positions, there is considerable possibility for correlated short range order throughout the structures.  相似文献   

13.
Rutile Ni x Ti1-3x Sb2x O2 solid solution nanoparticles were synthesized by a sol-gel route using propylene oxide as a gelation agent. Titanium oxide nanopowder and 12% TiCl3 solution were used as the source for titanium to investigate the influence of the titanium precursors on the formation of the target materials. It was found that the nanoparticles prepared using 12% TiCl3 solution showed a much lower phase formation temperature (700°C) as compared to those prepared from TiO2 nanoparticles (1000°C). This lower phase formation temperature allowed a substantial reduction of the aggregation of the particles during calcination leading to the formation of nearly mono-dispersed nanoparticles of about 20 nm. The results of this work show that the epoxide assisted sol-gel method is capable to produce titanium-based ternary oxide solid solution nanoparticles, owing to the formation of a highly homogeneous precursor gel intermediate.  相似文献   

14.
Orthorhombic perovskite-type (La0.1Ca0.9)(Mn1−xGex)O3was synthesized in the range (0.00≤x≤0.10). Since the ionic radius of the Ge4+ion is equal to that of the Mn4+ion, the (Mn, Ge)–O(1, 2) distances and the angles for (Mn, Ge)–O(1, 2)–(Mn, Ge) are independent of the composition (x). From the measurement of the electrical resistivity (ρ), all manganates exhibit a metal–insulator transition. With increasingx, the metal–insulator transition temperature (Tt) increases and/dTdecreases. The cation–anion–cation overlap integrals are weakened by the Ge4+ion.  相似文献   

15.
一种在近红外光谱(NIR)区域高效的量子剪裁现象已在Ca0.8-2x(Ybx Tb0.1Na0.1+x)2x WO4(x=0~0.2)荧光粉中得到证实,该量子剪裁通过吸收紫外线光子发射近红外光子,能量传递包括两个协同过程,分别是WO42-基团到Yb3+离子和WO42-基团到Tb3+离子再到Yb3+离子,Yb3+离子的掺杂浓度对荧光粉在可见光和近红外光谱的发光,荧光寿命和量子效率的影响已进行了详细的研究。经计算,量子效率最大达到135.7%。铽与镱共掺钨酸钙的近红外量子剪裁,通过吸收太阳光谱的1个紫外光子到2个1 000 nm光子(2倍光子数增加)的下转化机制实现高效率硅太阳能电池的途径。  相似文献   

16.
This work is devoted to a detailed analysis of the interconnection between composition, cation distribution and acidic properties of the surface of nanocrystalline ferrites NixZn1−xFe2O4 obtained by aerosol pyrolysis. The detailed analysis of the Mössbauer spectra allows us to determine the distribution of cations between tetrahedral and octahedral positions in spinel structure. Depending on samples composition, the tetrahedral positions can be occupied by only Fe3+ cations (inverse spinel, x≥0.4) or by Fe3+ and Zn2+ cations (mixed spinel, x=0, 0.2). Increasing the nickel concentration in the ferrite leads to decrease in the number of strong acid centers on the surface. It was found that the decrease in the contribution of strong surface acid sites leads to an increase in sensory sensitivity of the ferrite towards ammonia. For ethanol detection an inverse relationship between sensor signal and surface acidity was observed.  相似文献   

17.
Three tetranuclear clusters [Ru4H4(CO)11(PPh3)] (1), [Ru4H2(CO)12(PPh3)] (2) and [Ru3IrH(CO)12(PPh3)] (3) were formed in the reaction of [Ir(CO)Cl(PPh3)2] and Na[Ru3H(CO)11] in tetrahydrofuran. Complexes 1–3 were characterized by IR and 1H and 31P NMR, and the structure of the clusters was confirmed by single crystal X-ray analysis. In 2 and 3 one of the carbonyls bridges between two ruthenium atoms; otherwise the compounds contain only terminal carbonyls.  相似文献   

18.
Molecular dynamics method is used for studying complex permittivity ɛ and the stability of individual water clusters as a function of the number of involved molecules (7 ≤ i ≤ 20) and also the corresponding characteristics of water aggregates with a captured CO2 or CH4 molecule. Absorption of the latter molecules leads to considerable changes in dielectric properties and stability of clusters. In particular, upon the addition of a CO2 molecule to a water cluster, the oscillation parameters of the real and imaginary parts of the permittivity change. Capture of a CH4 molecule by a water aggregate changes the ɛ(ω) dependence from the relaxation to resonance type. For i ≥ 15, the thermal stability of individual water clusters can be lower than that of aggregates CO2(H2O) i and CH4(H2O) i . The mechanical stability of (H2O) i ≥ 13 clusters can exceed that of heteroclusters under consideration. Clusters (H2O) i and CO2(H2O) i have approximately the same dielectric stability, whereas aggregates CH4(H2O) i exhibit lower stability with respect to electric perturbations. Original Russian Text ? A.E. Galashev, V.N. Chukanov, A.N. Novruzov, O.A. Novruzova, 2007, published in Elektrokhimiya, 2007, Vol. 43, No. 2, pp. 143–153.  相似文献   

19.
一种在近红外光谱(NIR)区域高效的量子剪裁现象已在Ca0.8-2x(YbxTb0.1Na0.1+x)2xWO4(x=0~0.2)荧光粉中得到证实,该量子剪裁通过吸收紫外线光子发射近红外光子,能量传递包括两个协同过程,分别是WO42-基团到Yb3+离子和WO42-基团到Tb3+离子再到Yb3+离子,Yb3+离子的掺杂浓度对荧光粉在可见光和近红外光谱的发光,荧光寿命和量子效率的影响已进行了详细得研究。经计算,量子效率最大达到135.7%。铽与镱共掺钨酸钙的近红外量子剪裁,通过吸收太阳光谱的1个紫外光到2个1000nm光子(2倍光子数增加)的下转化机制实现高效率硅太阳能电池的途径。  相似文献   

20.
Conducting polyaniline-zirconium dioxide (PANI/ZrO2) composites were synthesized by ‘in situ’ deposition technique in the presence of hydrochloric acid (HCl) as dopant by adding the fine grade powder (average particle size of approximately 20 nm) of ZrO2 into the polymerization reaction mixture of aniline. The composites obtained were characterized by infrared spectra (IR) and X-ray diffraction (XRD) and thermogravimetric analysis (TGA). TG curves and DTG curves of the composites suggest that the thermal degradation process of PANI/ZrO2 composites proceeds in two-steps and the composites are more thermally stable than that of the pure PANI. The improvement in the thermal stability for the composites is attributed to the interaction between PANI and ZrO2, which restricts the thermal motion of PANI chains and shields the degradation of PANI in the composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号