首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
《Solid State Sciences》2012,14(6):689-692
Properties of attached boron nitride (BN) nanotubes based on linking two zigzag nanotubes through a carboxylic (–(CO)O–) linker were investigated by performing density functional theory (DFT) calculations. The linking boron and nitrogen atoms at the edges of two zigzag BN nanotubes were linked to the –(C]O)O– linker to make possible the attachments of two BN nanotubes together. Total energies, energy gaps, dipole moments, linking bond lengths and angles, and quadrupole coupling constants were obtained for the optimized structures to determine the properties of the attached BN nanotubes. The results indicated that different properties could be seen for the investigated models based on their linking status. For quadrupole coupling constants, the most significant changes of parameters were observed for the linking atoms among the investigated models of attached BN nanotubes.  相似文献   

2.
采用分子动力学方法(MD)研究熔体条件下聚乙烯分子在氮化硼纳米管表面和氮化硼片层表面的结晶机理。通过对聚乙烯分子结晶过程中晶体构象的演变、空间内分子分布的变化以及分子扩散特性的研究,从微观角度比较了两种结构氮化硼纳米材料对聚乙烯结晶的影响。结果表明一维结构的氮化硼纳米管诱导聚乙烯结晶的能力远高于二维片层状的氮化硼,说明纳米材料的维度影响着高分子材料的结晶性能。  相似文献   

3.
利用密度泛函理论研究了NH3在完整和含有缺陷的硼纳米管上的吸附行为以及相关电子性质. 计算结果表明, 对于α硼纳米管, 在不同的直径和手性条件下, NH3均倾向于吸附在配位数为6的顶位上. 电子结构计算结果表明, NH3能够吸附在纳米管表面主要是由于N和B原子产生了较强的相互作用. 表明硼纳米管是一种潜在的NH3气气敏材料.  相似文献   

4.

Abstract  

Nuclear magnetic resonance (NMR) parameters including isotropic and anisotropic chemical shielding parameters and electronic structures were calculated using density functional theory (DFT) for silicon–carbide-doped boron phosphide nanotubes. Geometry optimizations were carried out at the B3LYP/6-31G* level of theory using the Gaussian 03 program suite. The isotropic and anisotropic chemical shielding parameters were calculated for the sites of various 13C, 29Si, 11B, and also 31P atoms in pristine and SiC-doped (6,0) zigzag boron phosphide nanotube models. The calculations indicated that doping of 11B and 31P atoms by C and Si atoms had a more significant influence on the calculated shielding tensors than did doping of the B and P atoms by Si and C atoms. In comparison with the pristine model, Si- and C-doping of P and B sites of the zigzag nanotubes reduces the energy gaps of the nanotubes and increases their electrical conductance.  相似文献   

5.
DFT calculations were performed to investigation of the influence of doping three atoms of aluminum on the electronic properties of the (4,0) zigzag boron nitride nanotube (BNNT). Also, adsorption properties of nitrosamine (NA) and thionitrosamine (TNA) molecules as carcinogen agents onto BN and BAl3N nanotubes were studied. The results show that the B3AlN nanotube is the most energetically favorable candidates for adsorption of these molecules. Also, B(B3Al)NNT/TNA complexes are more stable than B(B3Al)NNT/NA complexes. The HOMO–LUMO gap, electronic chemical potential (μ), hardness (?), softness (S), the maximum amount of electronic charge (ΔNmax) and electrophilicity index (ω) for monomers and complexes in the gas and polar solvent phases were calculated. The results show that the conductivity and reactivity of BNNT increase by doping Al atoms instead of B atoms. Also, the interaction of NA and TNA molecules with BN and BAl3N nanotubes results in significant changes in the electronic properties of nanotubes. Based on the natural bond orbital (NBO) analysis, in all complexes charge transfer occurs from NA and TNA molecules to nanotubes. Theory of atoms in molecules (AIM) was applied to characterize the nature of interactions in nanotubes. It is predicted that, BN and B3AlN nanotubes can be used to as sensor for detection of NA and TNA molecules.  相似文献   

6.

Abstract  

Density-functional theory calculations have been performed to investigate the properties of the electronic structures of silicon–carbon-doped boron nitride nanotubes (BNNTs). The geometries of zigzag and armchair BNNTs were initially optimized and the quadrupole coupling constants subsequently calculated. The results indicate that doping of B and N atoms by C and Si atoms has more influence on the electronic structure of the BNNTs than does doping of B and N atoms by Si and C atoms. The changes of the electronic sites of the N atoms are also more significant than those of the B atoms.  相似文献   

7.
On the basis of density functional theory (DFT) methods, we study the magnetic properties and electronic structures of the armchair (4, 4) and zigzag (8, 0) single-wall SiC nanotubes with various vacancies and boron substitution. The calculation results indicate that a Si vacancy could induce the magnetic moments in both armchair (4, 4) and zigzag (8, 0) single-wall SiC nanotubes, which mainly arise from the p orbital of C atoms surrounding Si vacancy, leading to the ferromagnetic coupling. However, a C vacancy could only bring about the magnetic moment in armchair (4, 4) single-wall SiC nanotube, which mainly originates from the polarization of Si p electrons, leading to the antiferromagnetic coupling. In addition, for both kinds of single-wall SiC nanotubes, magnetic moments can be induced by a boron atom substituting for C atom. When two boron atoms locate nearest neighbored, both kinds of single-wall Si(C, B) nanotubes exhibit antiferromagnetic coupling.  相似文献   

8.
Nanotubes are giant cage molecules looking like closed hollow cylindrical shells. This review deals with basic principles of the linear augmented cylindrical Green’s function method and its applications to calculation of the electronic structure of perfect nanotubes and those containing substitutional impurities. A major argument for using cylindrical waves to describe nanotubes is that such a choice of the basis set makes it possible to explicitly consider the actual cylindrical geometry of nanotubes, which, in particular, ensures rapid convergence of iterative procedures. A computation technique has been described and the results of calculations of the band structure and densities of states of carbon and boron nitride nanotubes have been reported. Special attention has been paid to the changes in the electronic properties of nanotubes induced by the substitution of nitrogen, boron, or oxygen for C atoms in the carbon nanotubes, as well as to the isoelectronic substitution of P, Sb, or As for the nitrogen and of Al, In, or Ga for the boron in boron nitride nanotubes.  相似文献   

9.

Abstract  

We performed density functional theory (DFT) calculations to investigate the properties of electronic structures of representative armchair and zigzag silicon carbide nanotubes (SiCNTs). The model structures were optimized and the NMR parameters were calculated at the sites of silicon-29 and carbon-13 atoms in these structures. Our results indicated that different electronic environments could be detected by using the atoms of nanotubes in which the atoms of tips, especially for zigzag SiCNT, exhibit distinctive properties among other atoms.  相似文献   

10.
Density functional theory (DFT) calculations have been performed to investigate the electronic and structural properties of sulfur (S) terminated models of zigzag boron nitride (BN) nanotube. Four models including pristine, boron (B) tip terminated by S, nitrogen (N) tip terminated by S, and both of B and N tips terminated by S have been considered for optimizations and chemical shielding (CS) parameters calculations. The results indicate that the B–N bond lengths do not detect any changes due to the S-termination but the band gaps and dipole moments detect notable changes especially for the model of the N-tip terminated by the S atoms. The CS parameters also indicate that the atoms of the models are divided into layers with similar parameters in each layer. In the model of the B-tip terminated by the S atoms, the CS parameters indicate strong chemical bonding of N- and S-layers; however, only some attractions between the B- and S-layers of the model of the N-tip terminated by the S atoms have been detected. In the model of B and N tips terminated by the S atoms, the most significant changes among the models are detected.  相似文献   

11.
The structural characteristics of perhydrogenated carbon and boron nitride nanotubes are determined by means of quantum chemical calculations. Two families of nanotubes are systematically studied for both carbon and boron nitride, the nanotubes being derived from the perhydrogenated (110) and (111) sheets of diamond and cubic boron nitride. Single‐walled perhydrogenated carbon nanotubes prefer structures analogous to the (111) sheet. In clear contrast, the single‐walled perhydrogenated boron nitride nanotubes prefer structures analogous to the (110) sheet. The significantly different structural characteristics are due to the polarization of hydrogen atoms in the perhydrogenated boron nitride nanotubes. The presence of attractive electrostatic H? H interactions leads to a strong preference for multilayering of the boron nitride sheets and nanotubes. The results are expected to provide new insights into the structural characteristics of main‐group binary hydrides.  相似文献   

12.
Similar to carbon‐based graphene, fullerenes and carbon nanotubes, boron atoms can form sheets, fullerenes, and nanotubes. Here we investigate several of these novel boron structures all based on the boron double ring within the framework of density functional theory. The boron sheet is found to be metallic and flat in its ground state. The spherical boron cage containing 180 atoms is also stable and has I symmetry. Stable nanotubes are obtained by rolling up the boron sheet, and all are metallic. The hydrogen storage capacity of boron nanostructures is also explored, and it is found that Li‐decorated boron sheets and nanotubes are potential candidates for hydrogen storage. For Li‐decorated boron sheets, each Li atom can adsorb a maximum of 4 H2 molecules with gd=7.892 wt %. The hydrogen gravimetric density increases to gd=12.309 wt % for the Li‐decorated (0,6) boron nanotube.  相似文献   

13.
Substituted C(2)B(10) carborane cages have been successfully attached to the side walls of single-wall carbon nanotubes (SWCNTs) via nitrene cycloaddition. The decapitations of these C(2)B(10) carborane cages, with the appended SWCNTs intact, were accomplished by the reaction with sodium hydroxide in refluxing ethanol. During base reflux, the three-membered ring formed by the nitrene and SWCNT was opened to produce water-soluble SWCNTs in which the side walls are functionalized by both substituted nido-C(2)B(9) carborane units and ethoxide moieties. All new compounds are characterized by EA, SEM, TEM, UV, NMR, and IR spectra and chemical analyses. Selected tissue distribution studies on one of these nanotubes, {([Na(+)][1-Me-2-((CH(2))(4)NH-)-1,2-C(2)B(9)H(10)][OEt])(n)(SWCNT)} (Va), show that the boron atoms are concentrated more in tumors cells than in blood and other organs, making it an attractive nanovehicle for the delivery of boron to tumor cells for an effective boron neutron capture therapy in the treatment of cancer.  相似文献   

14.
基于硼氮纳米管(BNNTs), 研究了多重锂化硼氮纳米管Lin-(n,0,l)BNNTs(n=6和8, l=2~4)的结构与非线性光学性质. 研究表明, 在Lin-(n,0,l)BNNTs中, Li原子上的自然键轨道电荷接近+1(0.769~0.827 e), 表明Li原子上的电子转移到了硼氮纳米管上, 从而形成了多重锂盐. 同时发现, 增加管长和拓宽管径都可有效地增加体系的一阶超极化率. 更重要的是, Lin-(n,0,l)BNNTs的紫外-可见吸收主要发生在270~290 nm附近, 且当管长增加时, Lin-(n,0,l)BNNT的紫外-可见吸收光谱发生了蓝移, 改善了非线性与透光性之间的关系. 此外, Lin-(n,0,l)BNNTs还具有良好的稳定性[垂直电离势(VIP)=5.85~6.0 eV].  相似文献   

15.

Abstract  

Density functional theory (DFT) calculations were performed to investigate the electronic structure properties of Ge-doped boron phosphide nanotubes (BPNTs) as a semiconductor at the B3LYP/6-31G* level of theory in order to evaluate the influence of Ge doping on (4,4) armchair BPNTs. We extended the DFT calculations to predict the electronic structure properties of Ge-doped boron phosphide nanotubes, which are very important for production of solid-state devices and other applications. The isotropic (CSI) and anisotropic (CSA) chemical shielding parameters for the sites of various 11B and 31P atoms, and the quadrupole coupling constant (C Q) and asymmetry parameter (η Q) at the sites of various 11B nuclei, were calculated in pristine and Ge-doped (4,4) armchair BPNT models. The calculations indicated that, in these two forms of Ge-doped BPNTs, the binding energies are not attractive and do not characterize a chemisorption process. In comparison with the pristine model, the band gap of the two forms of Ge-doped BPNTs is reduced and increases their electrical conductance. The dipole moments of the Ge-doped BPNT structures show notable changes with respect to the pristine model. The nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) results show that the GeB model is a more reactive material than the pristine or GeP model.  相似文献   

16.
The atomic and electronic structures of fluorinated BN nanotubes (BNNTs) were investigated by generalized gradient approximation (GGA) density functional theory (DFT). The reaction energies of F2 with pristine single-walled BNNTs to form fluorinated BNNTs are exothermic up to 50% coverage. At lower F coverages (below 50%), fluorines prefer external attachments to boron atoms and stay as far away as possible. At 50% F coverage, fluorines favor attachment to all the boron atoms of the outer surface energetically. Such preferable fluorination patterns and highly exothermic reaction energies hold true for double-walled (and multiwalled) BNNTs when the outer tube surface is considered. Fluorination transforms BNNTs into p-type semiconductors at low F coverages, while high F coverages convert BNNTs into p-type conductors. Therefore, the electronic and transport properties of BNNTs can be engineered by fluorination, and this provides potential applications for fluorinated BNNTs in nanoelectronics.  相似文献   

17.
A method for calculating the electronic structure of point defects in nanotubes is developed on the basis of the linear augmented cylindrical wave (LACW) method. The Green function of a defect nanotube is calculated using the Dyson matrix equation. The consideration is carried out in terms of the local density functional theory and the muffin-tin approximation for the electronic potential. Local densities of state are calculated for boron and nitrogen dopants in metal, semimetal, and semiconductor and chiral and nonchiral nanotubes. An increased density of states at the Fermi level is the most significant effect of boron and nitrogen dopants in metal nanotubes. In all semiconductor nanotubes, localized boron states close the optical band-gap. The effect of nitrogen atoms is restricted to a small rise in local densities of state at the Fermi level.  相似文献   

18.
Semiconductors with band gap widths of 1.5–2.8 eV are used as catalysts for hydrogen production by photochemical water splitting. The electronic states of BN nanotubes doped with Group III–V nontransition elements have been studied by quantum-chemical methods. It has been found that nanotubes with a small excess of boron or with carbon atoms substituted for some boron atoms can be used as candidates for creation of such catalysts since they have optical absorption in this spectral range.  相似文献   

19.
Decoration of nitrogen vacancies by oxygen atoms has been studied by near-edge X-ray absorption fine structure (NEXAFS) around B K-edge in several boron nitride (BN) structures, including bamboo-like and multi-walled BN nanotubes. Breaking of B-N bonds and formation of nitrogen vacancies under low-energy ion bombardment reduces oxidation resistance of BN structures and promotes an efficient oxygen-healing mechanism, in full agreement with some recent theoretical predictions. The formation of mixed O-B-N and B-O bonds is clearly identified by well-resolved peaks in NEXAFS spectra of excited boron atoms.  相似文献   

20.
In this study, the encapsulation of F(-) in different nanotubes (NTs) has been investigated using electronic structure calculations and Car-Parrinello molecular dynamics simulations. The carbon atoms in the single walled carbon nanotube (CNT) are systematically doped with B and N atoms. The effect of the encapsulation of F(-) in the boron nitride nanotube (BNNT) has also been investigated. Electronic structure calculations show that the (7,0) chirality nanotube forms a more stable endohedral complex (with F(-)) than the other nanotubes. Evidence obtained from the band structure of CNT calculations reveals that the band gap of the CNT is marginally affected by the encapsulation. However, the same encapsulation significantly changes the band gap of the BNNT. The density of states (DOS) derived from the calculations shows significant changes near the Fermi level. The snapshots obtained from the CPMD simulation highlight the fluctuation of the anion inside the tube and there is more fluctuation in BNNT than in CNT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号