首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Syntheses, crystal structures and thermal behavior of two new hydrated cerium(III) sulfates are reported, Ce2(SO4)3·4H2O ( I ) and β‐Ce2(SO4)3·8H2O ( II ), both forming three‐dimensional networks. Compound I crystallizes in the space group P21/n. There are two non‐equivalent cerium atoms in the structure of I , one nine‐ and one ten‐fold coordinated to oxygen atoms. The cerium polyhedra are edge sharing, forming helically propagating chains, held together by sulfate groups. The structure is compact, all the sulfate groups are edge‐sharing with cerium polyhedra and one third of the oxygen atoms, belonging to sulfate groups, are in the S–Oμ3–Ce2 bonding mode. Compound II constitutes a new structure type among the octahydrated rare‐earth sulfates which belongs to the space group Pn. Each cerium atom is in contact with nine oxygen atoms, these belong to four water molecules, three corner sharing and one edge sharing sulfate groups. The crystal structure is built up by layers of [Ce(H2O)4(SO4)]nn+ held together by doubly edge sharing sulfate groups. The dehydration of II is a three step process, forming Ce2(SO4)3·5H2O, Ce2(SO4)3·4H2O and Ce2(SO4)3, respectively. During the oxidative decomposition of the anhydrous form, Ce2(SO4)3, into the final product CeO2, small amount of CeO(SO4) as an intermediate species was detected.  相似文献   

2.
The photolysis of SO2 at 3080 Å, FWHM = 150 Å, and 22°C has been investigated in the presence of cis- and trans-C2F2H2. Quantum yield measurements for the photosensitized isomerization of cis-C2F2H2 to trans-C2F2H2 have been made for a variation in the [SO2]/[cis-C2F2H2] ratio from 0.992 to 253. The results fit a mechanism which is consistent with the SO2(3B1) state being the reactive excited state of sulfur dioxide. A mechanism employing only the SO2(1B1) and SO2(3B1) excited states is quite satisfactory to rationalize the data. A value for the SO2 collisionally induced intersystem crossing efficiency from SO2(1B1) to SO2(3B1) of 0.35 ± 0.14 was estimated while the cis-C2F2H2 efficiency was found to be 0.030 ± 0.012. The rate constant at 22°C for the removal of SO2(3B1) molecules by cis-C2F2H2 was found to be (1.43 ± 0.13) × 10101./mole · sec. A photostationary composition, [cis]/[trans] = 1.0 ± 0.1, was found from prolonged irradiations of SO2 in the presence of the cis and trans isomers.  相似文献   

3.
Reliable methods for enantioselective cis-dihydroxylation of trisubstituted alkenes are scarce. The iron(II) complex cis-α-[FeII(2-Me2-BQPN)(OTf)2], which bears a tetradentate N4 ligand (Me2-BQPN=(R,R)-N,N′-dimethyl-N,N′-bis(2-methylquinolin-8-yl)-1,2-diphenylethane-1,2-diamine), was prepared and characterized. With this complex as the catalyst, a broad range of trisubstituted electron-deficient alkenes were efficiently oxidized to chiral cis-diols in yields of up to 98 % and up to 99.9 % ee when using hydrogen peroxide (H2O2) as oxidant under mild conditions. Experimental studies (including 18O-labeling, ESI-MS, NMR, EPR, and UV/Vis analyses) and DFT calculations were performed to gain mechanistic insight, which suggested possible involvement of a chiral cis-FeV(O)2 reaction intermediate as an active oxidant. This cis-[FeII(chiral N4 ligand)]2+/H2O2 method could be a viable green alternative/complement to the existing OsO4-based methods for asymmetric alkene dihydroxylation reactions.  相似文献   

4.
Reliable methods for enantioselective cis‐dihydroxylation of trisubstituted alkenes are scarce. The iron(II) complex cis‐α‐[FeII(2‐Me2‐BQPN)(OTf)2], which bears a tetradentate N4 ligand (Me2‐BQPN=(R,R)‐N,N′‐dimethyl‐N,N′‐bis(2‐methylquinolin‐8‐yl)‐1,2‐diphenylethane‐1,2‐diamine), was prepared and characterized. With this complex as the catalyst, a broad range of trisubstituted electron‐deficient alkenes were efficiently oxidized to chiral cis‐diols in yields of up to 98 % and up to 99.9 % ee when using hydrogen peroxide (H2O2) as oxidant under mild conditions. Experimental studies (including 18O‐labeling, ESI‐MS, NMR, EPR, and UV/Vis analyses) and DFT calculations were performed to gain mechanistic insight, which suggested possible involvement of a chiral cis‐FeV(O)2 reaction intermediate as an active oxidant. This cis‐[FeII(chiral N4 ligand)]2+/H2O2 method could be a viable green alternative/complement to the existing OsO4‐based methods for asymmetric alkene dihydroxylation reactions.  相似文献   

5.
Summary Some copper(II) complexes of the types: Cu(HPPK)-(PPK)X, Cu(HMPK)(MPK)X (where HPPK = syn-phenyl-2-pyridylketoxime, HMPK = syn-methyl-2-pyridylketoxime and X = Cl, Br, I, NO3 , SCN or SeCN) Cu(HPPK)2SO4 3 H2O and Cu(HMPK)2SO4 · 3 H2O were synthesized and characterized by analysis, magnetic susceptibility, e.s.r., reflectance and i.r. spectral measurements. The spectral data suggest that Cu(HPPK)(PPK)X and Cu(HMPK)(MPK)X containcis square-coplanar [Cu(HPPK)(PPK)]+ and [Cu(HMPK)(MPK)]+ units respectively, linked by weakly coordinated anions, giving infinite polymeric highly distorted octahedral chain structures, whereas Cu(HPPK)2SO4 · 3H2O and Cu(HMPK)2SO4 · 3 H2O have acis distorted octahedral structure containing two ligand molecules of ketoxime and a bidentate sulphate group. The polycrystalline e.s.r. spectra suggest a distorted octahedral stereochemistry for the CuII ion involving a ground-state. By using e.s.r. and reflectance spectral data, the orbital reduction parameters, k11 and k1 were calculated and interpreted in terms of molecular orbital coefficients.  相似文献   

6.
The title complex {[Co(dimb)2(H2O)2]·(NO3)2·(H2O)2}n ( 1 ) (dimb = 1,3‐di(imidazol‐1‐ylmethyl)‐5‐methylbenzene) has been hydrothermally synthesized by the reaction of dimb with Co(NO3)2·6H2O in aqueous solution. The cobalt(II) atoms are linked by bridging dimb ligands to form 2D corrugated and wavy networks containing Co4(dimb)4 macrocyclic motifs. Two neighboring independent layers interlinked each other in a parallel fashion to construct three‐dimensional structure by O–H···O, N–H···O and C–H···O hydrogen bonds. Magnetic measurement shows the weak antiferromagnetic interaction with a one‐dimensional chain model in the range of 5–300 K, with J of –0.68 cm−1.  相似文献   

7.
Mn(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) complexes of multifunctional triaminoxime have been synthesized and characterized by elemental analyses, IR, UV–Vis spectra, magnetic moments, 1H- and 13C-NMR spectra for ligand and its Ni(II) complex, mass spectra, molar conductances, thermal analyses (DTA, DTG and TG) and ESR measurements. The IR spectral data show that the ligand is bi-basic or tri-basic tetradentate towards the metals. Molar conductances in DMF indicate that the complexes are non-electrolytes. The ESR spectra of solid copper(II) complexes [(HL)(Cu)2(Cl)2] · 2H2O (2) and [(L)(Cu)3(OH)3(H2O)6] · 7H2O (6) show axial symmetry of a d x²???y 2 ground state; however, [(HL)(Co)] (4) shows an axial type with d Z 2 ground state and manganese(II) complex [(L)(Mn)3(OH)3(H2O)6] · 4H2O (10) shows an isotropic type. The biological activity of the ligand and its metal complexes are discussed.  相似文献   

8.
Three new polynuclear compounds based on a dicarboxylic acid ligand are reported. In particular, two Cu(II) coordination compounds, [Cu2(H2O)6(Hbzlidp)2](CF3SO3)2·2H2O (1) and [Cu(NO3)(Hbzlidp)] (2) (bzlidp2? = N-benzyliminodipropionate anion), and a Ni(II) dinuclear compound, [Ni2(H2O)4(bzlidp)2] (3), were synthesized and characterized by IR spectroscopy, elemental analysis and single crystal X-ray diffraction. Different structures were obtained depending on the reaction conditions. The structural analyses reveal that 1 was formed by dinuclear [Cu2(H2O)6(Hbzlidp)2]2+ units built by two copper(II) ions joined through two Hbzlidp? ligands, while 2 was formed by pairs of Cu(II) centers bridged by four syn,syn carboxylate groups to generate “paddle wheel” units. The dinuclear copper units are arranged in a rhombus type grid, in a 2-D layer structure. In both cases, the N was protonated and not coordinated to the metal center. Compound 3 was formed by [Ni2(H2O)4(bzlidp)2] neutral dinuclear units, with octahedral Ni(II) centers. Solution studies of the ligand–M(II) systems (M(II) = Mn, Co, Ni, Cu, Zn, Cd, and Pb) were also carried out.  相似文献   

9.
Two tetranuclear manganese complexes, [Mn4(L1)6](ClO4)2?2.75H2O (1) [HL1 = 4-methyl-2-((pyridin-2-ylmethylene)amino)phenol] and [Mn4(L2)4(NO3)3(OH)]?pz?3H2O (2) [HL2 = (1H-pyrazol-1-yl)(pyridin-2-yl)methanol, pz = pyrazole], have been synthesized and characterized by IR spectroscopy, elemental analysis, single-crystal X-ray diffraction, and magnetic measurements. The structural analysis revealed that the central manganese ion is linked with three apical manganese ions through six phenoxo-bridges creating a Mn4O6 core for 1; 2 has a cubane-like topology with the Mn(II) ions and the deprotonated oxygens from L2 alternatively occupying vertices. The magnetic studies indicated a weak ferromagnetic coupling interaction (J = 0.48 ± 0.087 cm?1, g = 2.00, θ = ?0.78 K) for 1 and a weak antiferromagnetic spin-exchange interaction (J1 = ?0.50 ± 0.075 cm?1, J2 = ?0.13 ± 0.082 cm?1, g = 1.98) between Mn(II) ions for 2. The magnetostructural correlations of the two Mn4 clusters have been discussed tentatively.  相似文献   

10.
Self‐assembly of Cd(phen)2+ and Cu(phen)2+ (phen = 1,10‐phenanthroline) building blocks with the bent ligand 4,4′‐dithiodipyridine (dtdp) has been investigated. Both building blocks serve as corner units with constrained cis‐geometry. The arched chain coordination polymer [{Cd(phen)(μ‐dtdp)(dtdp)(H2O)}(ClO4)2·2CH3OH·1.5H2O]n ( 1 ) crystallised from a mixture of Cd(ClO4)2·H2O, phen and dtdp in methanol. The reaction of [Cu(phen)(H2O)2](CF3SO3)2 ( 2 ) with dtdp in an ethanol/water mixture yielded a chair‐like metallamacrocycle, [{Cu(phen)(CF3SO3)2}2(μ‐dtpd)2] ( 3 ). The crystal structure of the precursor complex 2 is also reported.  相似文献   

11.
This study measures the osmotic coefficients of {xH2SO4 + (1−x)Fe2(SO4)3}(aq) solutions at 298.15 and 323.15 K that have ionic strengths as great as 19.3 mol,kg−1, using the isopiestic method. Experiments utilized both aqueous NaCl and H2SO4 as reference solutions. Equilibrium values of the osmotic coefficient obtained using the two different reference solutions were in satisfactory internal agreement. The solutions follow generally the Zdanovskii empirical linear relationship and yield values of a w for the Fe2(SO4)3–H2O binary system at 298.15 K that are in good agreement with recent work and are consistent with other M2(SO4)3–H2O binary systems.  相似文献   

12.
A new dialdehyde 1,5-bis(2-formylphenyl)pentane was synthesized from 1,5-dibromopentane with salicylaldehyde and K2CO3; macrocyclic ligand was synthesized by reaction of 2,6-diaminopyridine and 1,5-bis(2-formylphenyl)pentane. Cu(II), Ni(II), Pb(II), Zn(II), Cd(II) and La(III) complexes were synthesized by reaction of the ligand and Cu(ClO4)2 · 6H2O, Ni(ClO4)2 · 6H2O, Pb(ClO4)2 · 6H2O, Zn(ClO4)2 · 6H2O, Cd(ClO4)2 · 6H2O and La(ClO4)3 · 6H2O, respectively. The ligand and its metal complexes have been characterized by elemental analysis, IR, 1H and 13C NMR, UV–Vis spectra, magnetic susceptibility, conductivity measurements and mass spectra. All complexes are diamagnetic and Cu(II) complex is binuclear.  相似文献   

13.
The crystal and molecular structure of dipotassium di‐μ‐oxo‐bis[aqua(oxalato‐O1,O2)oxomolybdenum(III)] trihydrate, K2­[Mo2O4(C2O4)2(H2O)2]·3H2O, has been determined from X‐ray diffraction data. In the dimeric anion, which has approximate twofold symmetry, each Mo atom is in a distorted octahedral coordination, being bonded to one terminal oxo‐O atom, two bridging O atoms, two O atoms from the oxalato ligand and one from the water mol­ecule. Bond lengths trans to the multiple‐bonded terminal oxo ligand are larger than those in the cis position, confirming the trans influence as a generally valid rule.  相似文献   

14.
Ferric sulfate trihydrate has been synthesized at 403 K under hydrothermal conditions. The structure consists of quadruple chains of [Fe2(SO4)3(H2O)3] parallel to [010]. Each quadruple chain is composed of equal proportions of FeO4(H2O)2 octahedra and FeO5(H2O) octahedra sharing corners with SO4 tetrahedra. The chains are joined to each other by hydrogen bonds. This compound is a new hydration state of Fe2(SO4)3·nH2O; minerals with n = 0, 5, 7.25–7.75, 9 and 11 are found in nature.  相似文献   

15.
The new Pd(II), Pt(II), Re(V), Mo(VI) and W(VI) complexes of 2-hydroxynicotinic acid (H2nicO), trans-[PdCl(HnicO)(PPh3)2]·0.75CH3CN (1), K[PdCl(HnicO)2]·H2O (2), [Pd(HnicO)2(bipy)] (3), cis-[PtCl(HnicO)(PPh3)2]·0.75CH3OH·0.5H2O (4), [PtCl(HnicO)(bipy)] (5), cis-[ReOI2(HnicO)(PPh3)] (6), Na2[Mo2O6(HnicO)2]·5H2O (7), Na2[Mo4O12(HnicO)2]·2H2O (8) and Na2[W2O6(HnicO)2]·5H2O (9) have been prepared. The crystal structures of 1 and 4, were determined by X-ray diffraction and show the HnicO ligand coordinated to palladium or platinum through the nitrogen atom only. Infrared, Raman, 1H and 13C{1H} NMR spectroscopic data for the complexes are presented and are in agreement with the crystallographic results.  相似文献   

16.
Two sulfato CuII complexes [Cu2(bpy)2(H2O)(OH)2(SO4)]· 4H2O ( 1 ) and [Cu(bpy)(H2O)2]SO4 ( 2 ) were synthesized and structurally characterized by single crystal X—ray diffraction. Complex 1 consists of the asymmetric dinuclear [Cu2(bpy)2(H2O)(OH)2(SO4)] complex molecules and hydrogen bonded H2O molecules. Within the dinuclear molecules, the Cu atoms are in square pyramidal geometries, where the equatorial sites are occupied by two N atoms of one bpy ligand and two O atoms of different μ2—OH groups and the apical position by one aqua ligand or one sulfato group. Through intermolecular O—H···O and C—H···O hydrogen bonds and intermolecular π—π stacking interactions, the dinuclear complex molecules are assembled into layers, between which the hydrogen bonded H2O molecules are located. The Cu atoms in 2 are octahedrally coordinated by two N atoms of one bpy ligand and four O atoms of two H2O molecules and two sulfato groups with the sulfato O atoms at the trans positions and are bridged by sulfato groups into 1[Cu(bpy)(H2O)2(SO4)2/2] chains. Through the interchain π—π stacking interactions and interchain C—H···O hydrogen bonds, the resulting chains are assembled into bi—chains, which are further interlinked into layers by O—H···O hydrogen bonds between adjacent bichains.  相似文献   

17.
A new dioxime ligand, (2E,3E)-3-[(6-{[(1E,2E)-2-(hydroxyimino)-1-methylpropylidene]amino}-pyridin-2-yl)imino]butan-2-one oxime, (H2Pymdo) (3) has been synthesized in H2O by reacting 2,3-butenedione monoxime (2) with 2,6-diaminopyridine. Mono-, di- and tri-nuclear copper(II) complexes of the dioxime ligand (H2Pymdo) and/or 1,10-phenanthroline have been prepared. The dioxime ligand (H2Pymdo) and its copper(II) complexes were characterized by 1H-n.m.r., 13C-n.m.r. and elemental analyses, magnetic moments, i.r. and mass spectral studies. The mononuclear copper(II) complex of H2Pymdo was found to have a 1:1 metal:ligand ratio. Elemental analyses, stoichiometric and spectroscopic data of the metal complexes indicated that the metal ions are coordinated to the oxime and imine nitrogen atoms (C=N). In the dinuclear complexes, in which the first Cu(II) ion was complexed with nitrogen atoms of the oxime and imine groups, the second Cu(II) ion is ligated with dianionic oxygen atoms of the oxime groups and are linked to the 1,10-phenanthroline nitrogen atoms. The trinuclear copper(II) complex (6) was formed by coordination of the third Cu(II) ion with dianionic oxygen atoms of each of two molecules of the mononuclear copper(II) complexes. The data support the proposed structure of H2Pymdo and its Cu(II) complexes.  相似文献   

18.
The reaction of cis-[Pt(15NH3)2(H2O) 2] 2+ (3) with N-acetylcysteine [H3accys] was investigated in aqueous solution. In this reaction, the ammine in the platinum complex formed was liberated. A mono-dentate sulfur-boundplatinum(II) product cis-[Pt(15NH3)2(H2O)(H2accys-S)]+ (7) and six-membered che-late ring complex cis-[Pt(15NH3)2 (Haccys-S,O)] (8) were formed in solution. The dinuclear sulfur-bridged complex 9, giving a broad peak in 15N NMR, was also observed, but only present in very tiny amounts. The mass spectrometry (ES-MS) was undertaken from this re action, and the product detected was only the dinuclear sulfur bridged platinum species and species related to it by ammine loss.  相似文献   

19.
Two cobalt(II) complexes based on 4,6-bis(2-pyridyl)-1,3,5-triazin-2-ol (HOBPT), [Co3(OBPT)(μ3?OH)(SO4)2(H2O)3]·2H2O (1) and [Co(OBPT)2]·2H2O (2) were obtained. Single-crystal X-ray diffraction analyses indicate that 1 is a two-dimensional (2D) structure and the ligand adopts mono/bis-bidentate coordination; this coordination mode of this ligand was never found before. Magnetic properties of 1 have been studied, showing that 1 is a spin canted belt. Much different from 1, 2 is a discrete structure with tridentate ligand with its hydroxyl group deprotonated but uncoordinated. Lattice water molecules in 2 link to four-membered water clusters, which linked the [Co(OBPT)2] to 1-D chains along the b axis.  相似文献   

20.
The oxalato-bridged dinickel(II) complex with the title ligand, [Ni2(L a H)2(μ-ox)](ClO4)2·2H2O (1), was prepared and its structure was determined by X-ray crystallography, as well as that of the monomeric nickel(II) complex, [Ni(L a H)ox]ClO4·3H2O (2). In Complexes 1 and 2, the ligand, L a , is folded along the N(4)–Ni(1)–N(11) axis. The antiferromagnetic coupling between the two nickel(II) centers in 1 was revealed and the coupling constant, J?=??17.4?cm?1, and g?=?2.11 were estimated. It was found that the oxalato-bridged dimer 1 was readily converted to the mononuclear cis-nickel(II) complex [NiL a (OH2)](ClO4)2 (3a), in basic aqueous solution. In [NiL a (CH3CN)]I2 (3b), which was derived from 3a, the aminomethyl pendant arm is coordinated to the Ni(II) ion and L a is folded along the N(1)–Ni(1)–N(8) axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号