首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Providing the strong spin-orbital interaction, Bismuth is the key element in the family of three-dimensional topological insulators. At the same time, Bismuth itself also has very unusual behavior, existing from the thinnest unit to bulk crystals. Ultrathin Bi (111) bilayers have been theoretically proposed as a two-dimensional topological insulator. The related experimental realization achieved only recently, by growing Bi (111) ultrathin bilayers on topological insulator Bi2Te3 or Bi2Se3 substrates. In this review, we started from the growth mode of Bi (111) bilayers and reviewed our recent progress in the studies of the electronic structures and the one-dimensional topological edge states using scanning tunneling microscopy/spectroscopy (STM/STS), angle-resolved photoemission spectroscopy (ARPES), and first principles calculations.  相似文献   

2.
In this paper the growth mechanism of a Te/Bi2Te3 novel structure is studied by ab-initio calculations. The results show that the growth of Te nanorods is determined by the adsorption energy of Te atoms on different crystalline Te surfaces. The adsorption energy of Te on the Te (001) surface is 3.29 eV, which is about 0.25 eV higher than that of Te on the Te (110). This energy difference makes the preferential growth direction along the 〈 001 〉 direction. In addition, the higher surface energy of Bi2Te3 (110) and the lattice misfit between crystalline Bi2We3 and Te along 〈 001 〉 direction are considered to explain the growth of the Bi2Te3 nanoplatelets, in which Volmer-Weber model is used. The theoretical results are in agreement with experimental observation.  相似文献   

3.
A dc magnetic sputtering process is applied to growth of a Mo back. contact layer onto the flexible polyimide (PI) and rigid soda-lime glass (SLC) substrates. The structural and electrical properties of the Mo layer coated on the two kinds of substrates are investigated by x-ray diffraction (XRD) and Hall effect measurements. The results show that the Mo layer on SLG indicate more better crystal quality and lower resistivity than that on the PI sheets. In contrast to the SLG substrate, the resistivity of the Mo layer on PI is increased by the vacuum annealing process at the substrate temperature of 450℃ under Se atmosphere, which is attributed to the cracked Mo layer induced by the mismatch of the coefficient of thermal expansion between PI and Mo material. The Cu(In,Ga)Se2 (CIGS) solar cells based on the PI and SLO substrates show the best conversion efficiencies of 8.16% and 10.98% (active area, 0.2cm^2), respectively. The cell efficiency of flexible CIGS solar cells on PI is limited by its relatively lower fill factor caused by the Mo back contact.  相似文献   

4.
The electrical and structural properties of polycrystalline Cu(In, Ga)Se2 films grown on polyimide (PI) substrates below 400℃ via one-stage and three-stage co-evaporation process have been investigated by x-ray diffraction spectra (XRD), scanning electron microscopy (SEM) and Hall effect measurement. As shown by XRD spectra, the stoichiometric CIGS films obtained by one-stage process exhibit the characteristic diffraction peaks of the (In0.68Ga0.32)2Se3 and Cu(In0.7Ga0.3)2Se. It is also found that the film structures indicate more columnar and compact than the three-stage process films from SEM images. The stoichiometric CIGS films obtained by three-stage process exhibit the coexistence of the secondary phase of (In0.68Ga0.32)2Se3, Cu2-xSe and Cu(In0.7Ga0.3)2Se. High net carrier concentration and sheet conductivity are also observed for this kind of film, related to the presence of Cu2-xSe phase. As a result, when the CIGS film growth temperature is below 400℃, the three-stage process is inefficient for solar cells. By using the one-stage co-evaporation process, the flexible CIGS solar cell on a PI substrate with the best conversion efficiency of 6.38% is demonstrated (active area 0.16cm^2).  相似文献   

5.
Atomically fiat thin films of topological semimetal Na3Bi are grown on double-layer graphene formed on 6H SiC(0001) substrates by molecular beam epitaxy. By combined techniques of molecular beam epitaxy, scanning tunneling microscopy and angle resolved photoelectron spectroscopy, the growth conditions for NaaBi thin films on double-layer graphene are successfully established. The band structure of NaaBi grown on graphene is mapped along Г-M and Г-K; directions. Furthermore, the energy band of Na3Bi at higher energy is uncovered by doping Cs atoms on the surface.  相似文献   

6.
This paper reports that the transverse laser induced thermoelectric voltages (LITV) axe observed for the first time in the step flow growth (1- x)PD(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT, x = 0.20, 0.33, 0.50) thin films deposited on vicinal-cut strontium titanate single crystal substrates. Because lead magnesium niobate-lead titanate is a solid solution of lead magnesium niobate (PMN) and lead titanate (PT), there are two types of signals. One is wide with a time response of a microsecond, and the other superimposed with the wide signal is narrow with a time response of a nanosecond. The transverse LITV signals depend on the ratio of PMN to PT drastically. Under the irradiation of 28-ns pulsed KrF excimer laser with the 248-nm wavelength, the largest induced voltage is observed in the 0.50Pb(Mg1/3Nb2/3)O3-0.50 PbTiO3 films. Moreover, the effects of film thickness, substrates, and tilt angles of substrates are also investigated.  相似文献   

7.
ZnO thin film growth prefers different orientations on the etched and unetched SrTiO 3(STO)(110) substrates.Inclined ZnO and cobalt-doped ZnO(ZnCoO) thin films are grown on unetched STO(110) substrates using oxygen plasma assisted molecular beam epitaxy,with the c-axis 42 inclined from the normal STO(110) surface.The growth geometries are ZnCoO[100]//STO[110] and ZnCoO[111]//STO[001].The low temperature photoluminescence spectra of the inclined ZnO and ZnCoO films are dominated by D 0 X emissions associated with A 0 X emissions,and the characteristic emissions for the 2 E(2G)→ 4A2(4F) transition of Co 2+ dopants and the relevant phonon-participated emissions are observed in the ZnCoO film,indicating the incorporation of Co 2+ ions at the lattice positions of the Zn 2+ ions.The c-axis inclined ZnCoO film shows ferromagnetic properties at room temperature.  相似文献   

8.
The influence of surface polarity on the structural properties of BiFeO3 (BFO) thin films is investigated. BFO thin films are epitaxially grown on SrTiO3 (STO) (100) and polar (111) surfaces by oxygen plasma-assisted molecular beam epitaxy. It is shown that the crystal structure, surface morphology, and defect states of BFO films grown on STO substrates with nonpolar (001) or polar (111) surfaces perform very differently. BFO/STO (001)is a fully strained tetragonal phase with orientation relationship (001)[100]BFOII(001)[100]STO, while BFO/STO (111) is a rhombohedral phase. BFO/STO (111) has rougher surface morphology and less defect states, which results in reduced leakage current and lower dielectric loss. Moreover, BFO films on both STO (001) and STO (111) are direct band oxides with similar band gaps of 2.65 eV and 2.67 eV, respectively.  相似文献   

9.
Cu(In, Ga)Se2 thin films are deposited on Mo-coated glass substrates by Se vapour selenization of sputtered metallic precursors in the atmosphere of Ar gas flow under a pressure of about 10 Pa. The in situ heat treatment of as-grown precursor leads to the formation of a better alloy. During selenization, the growth of CuInSe2 phase preferably proceeds through Se-poor phases as CuSe and InSe at relatively low substrate temperature of 250℃, due to the absence of In2Se3 at intermediate stage at low reactor pressure. Subsequently, the Cu(In,Ga)Se2 phase is produced by the reactive diffusion of CuInSe2 with a Se-poor GaSe phase at high temperature of up to 560℃. The final film exhibits smooth surface and large grain size. The absorber is used to fabricate a glass/Mo/Cu(In, Ga)Se2/CdS/ZnO cell with the total-area efficiency of about 7%. The low open-circuit voltage value of the cell fabricated should result from the nonuniform distribution of In and Ga in the absorber, due to the diffusion-controlled reaction during the phase formation. The films, as well as devices, are characterized.  相似文献   

10.
Submonolayer Bi and Au adsorptions on the GaAs(001)-2× 4 surface are investigated by scanning tunnelling microscopy, low energy electron diffraction and first-principles calculations. The 1 ×4 and 3 × 4 reconstructed surface induced by Bi and Au, respectively, are revealed and their structural models are proposed based on experiments and first-principles calculations. Moreover, the validity of the recently proposed generalized electron counting (GEC) model [Phys. Rev. Lett. 97 (2006) 126103] is examined in detail by using the two surfaces. The GEC model perfectly explains the structural features, such Bi-1 × 4 surface and the 3x arrangement of four-atom Au as the characteristic short double-line structure in the clusters.  相似文献   

11.
Cubic boron nitride (c-BN) films were deposited on Si(001) substrates in an ion beam assisted deposition (IBAD) system under various conditions, and the growth parameter spaces and optical properties of c-BN films have been investigated systematically. The results indicate that suitable ion bombardment is necessary for the growth of c-BN films, and a well defined parameter space can be established by using the P/a-parameter. The refractive index of BN films keeps a constant of 1.8 for the c-BN content lower than 50%, while for c-BN films with higher cubic phase the refractive index increases with the c-BN content from 1.8 at χc =50% to 2.1 at χc = 90%. Furthermore, the relationship between n and p for BN films can be described by the Anderson-Schreiber equation, and the overlap field parameter γ is determined to be 2.05.  相似文献   

12.
GaN intermedial layers grown under different pressures are inserted between GaN epilayers and AIN/Si(111) substrates. In situ optical reflectivity measurements show that a transition from the three-dimensional (3D) mode to the 2I) one occurs during the GaN epilayer growth when a higher growth pressure is used during the preceding GaN intermedial layer growth, and an improvement of the crystalline quality of GaN epilayer will be made. Combining the in situ reflectivity and transmission electron microscopy (TEM) measurements, it is suggested that the lateral growth at the transition of growth mode is favourable for bending of dislocation lines, thus reducing the density of threading dislocations in the epilayer.  相似文献   

13.
The solid-liquid interface motion of NaBi(WO4)2 (NBWO) melt crystal growth is observed in an in situ system, in which the whole processes of interface transition from fiat interface and cellular to dendrite are visualized. The spacing of the dendrite under smaller temperature gradient turns out to be larger than that under larger temperature gradient, which is found to be sensitive to the temperature distribution. The mechanism of dendrite growth of NBWO is studied based on the model of the growth units of anion coordination polyhedra. The { 001} face has two apex links, so it shows higher stability and has high growth rate and forms the arm of dendrite, whereas the {010} face has only one apex link, and thus shows relative slower growth rate and firstly forms the branches.  相似文献   

14.
何佳清  E.  VASCO  R.  DITTMANN  王仁卉 《中国物理快报》2006,23(5):1269-1272
Growth dynamics of epitaxiai (Ba, Sr)TiO3 thin films deposited at different temperatures on SrRuO3/SrTiO3 substrates by pulsed laser deposition is investigated by transmission electron microscopy. The films exhibit a layered structure comprising sublayers with distinctive features in regard to the remaining strain, density of misfit dislocations and/or lattice defects, and growth habit. We correlate these temperature-dependent features with the predominant misfit-strain relaxation mechanisms for each one of the detected growth regimes. The thickness dependence of the film structure is discussed within the framework of the predictions for a kineticaily modified Stranski-Krastanov growth mode.  相似文献   

15.
Patterning SiC substrates with focused ion beam for growth of confined graphene nanostructures is interesting for fabrication of graphene devices. However, by imposing an ion beam, the morphology of illuminated SiC substrate surface is inevitably damaged, which imposes significant effects on the subsequent growth of graphene. By using confocal Raman spectroscopy, we investigate the effects of ion beam illumination on the quality of graphene layers that are grown on 6H-SiC (0001) substrates with two different growth methods. With the first method, the 6H-SiC (0001) substrate is flash annealed in ultra-high vacuum. Prominent defects in graphene grown on illuminated areas are revealed by the emergence of Raman D peak. Significant changes in D peak intensity are observed with Ga+ ion fluence as low as 10^5 μm^-2. To eliminate the damage from the ion beam illumination, hydrogen etching is employed in the second growth method, with which prominent improvement in the quality of crystalline graphene is revealed by its Raman features. The defect density is significantly reduced as inferred from the disappearance of D peak. The Raman shift of G peak and 2D peak indicates strain-released graphene layers as grown in such a method. Such results provide essential information for patterning graphene nano-devices.  相似文献   

16.
The surface structure and electronic property of InP(001)-(2 ×1)S surface under S-rich condition are investigated based on first-principles simulations. The analyses of phase transition show that the 3B model is the most stable structure and the S-S dimer is difficult to form. The geometry of the 3B structure agrees well with the experiments. It is also found that the 3B structure has a good passivation with a band gap of about 1.24eV. The results indicate that the 3B structure is the best candidate for the sulfur-rich InP(001)(2 × 1)A phase.  相似文献   

17.
Ten thousands of unit-cell multilayer heterosturctures, [SrNb0.05 Ti0.95O3/La0.9 Sr0.1MnO3]3 (SNTO/LSMO), have been epitaxial grown on SrTiO3 (001) substrates by laser molecular beam epitaxy. The monitor of insitu. reflection high-energy electron diffraction demonstrates that the heterosturctures are layer-by-layer epitaxial growth. Atomic force microscope observation indicates that the surface of the heterosturcture is atomically smooth. The measurements of cross-sectional low magnification and high-resolution transmission electron microscopy as well as the corresponding selected area electron diffraction reveal that the interfaces are of perfect orientation, and the epitaxial crystalline structure shows the orientation relation of SNTO(001)//LSMO(001), and SNTO[100]//LSMO[100].  相似文献   

18.
Bi2Te3single crystals were prepared by the solid-state reaction method. The effect of the vacuum on the growth of Bi2Te3 single crystals was studied with varying the oxygen content by controlling the air pressure in the silica tube. High quality Bi2Te3 single crystals have been obtained and there is no influence on the growth by an extremely small amount of oxygen in a high vacuum at 1.0 × 10-3Pa. As the air pressure is increased at 1.0 × 10-2Pa, oxygen only mainly impacts on the growth of the surface for the prepared samples. Micron-sized rod-like structure and flower-like clusters are observed on the surface. For the samples prepared at 1.0 × 10-1Pa, x-ray diffraction data show that the yellow part on the surface is Bi2 Te O5, while the Bi2Te3 single crystal is still the major phase as the inside part. More interestingly, various crystal morphologies are observed by scanning electron microscope for Bi2Te3 near the boundary between Bi2Te3 and Bi2Te O5.Possible growth mechanisms for Bi2Te3 with different morphologies are discussed in detail.  相似文献   

19.
Using Co2O3 as the Co source, doped cerium oxide thin films with the composition of Ce0.97C00.03O2-δ (CCO) are deposited on Si(111) and glass substrates by pulse laser deposition technique. X-ray diffraction reveals that CCO films with (111) preferential orientation are grown on Si, while the fihn on glass is polycrystalline with nanocrystal. X-ray photoelectron spectroscopy shows that the (Jo displaces the (;e atom and exists in high spin state rather than low spin state, which contributes to the room-temperature ferromagnetism confirmed by vibration sample magnetometer. I~ilms on Si and glass are different in ferromagnetism, which is believed to be induced by different film microstructures. Based on these results, the possible ferromagnetism in this insulating film is discussed. Anyway, successful fabrication of CCO films with room-temperature ferromagnetism on Si substrates is of great importance in both technological and theoretical aspects.  相似文献   

20.
张毅  邓朝勇  马静  林元华  南策文 《中国物理 B》2008,17(10):3910-3916
Multiferroic NiFe2O4 (NFO)-BaTiO3 (BTO) bilayered thin films are epitaxially grown on (001) Nb-doped SrTiO3 (STO) substrates by pulsed-laser deposition (PLD). Different growth sequences of NFO and BTO on the substrate yield two kinds of epitaxial heterostructures with (001)-orientation, i.e. (001)-NFO/(001)-BTO/substrate and (001)- BTO/(001)-NFO/substrate. Microstructure studies from x-ray diffraction (XRD) and electron microscopies show differences between these two heterostructures, which result in different multiferroic behaviours. The heterostructured composite films exhibit good coexistence of both ferroelectric and ferromagnetic properties, in particular, obvious magnetoelectric (ME) effect on coupling response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号