首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
In this paper, the complex variable reproducing kernel particle (CVRKP) method and the finite element (FE) method are combined as the CVRKP-FE method to solve transient heat conduction problems. The CVRKP-FE method not only conveniently imposes the essential boundary conditions, but also exploits the advantages of the individual methods while avoiding their disadvantages, then the computational efficiency is higher. A hybrid approximation function is applied to combine the CVRKP method with the FE method, and the traditional difference method for two-point boundary value problems is selected as the time discretization scheme. The corresponding formulations of the CVRKP-FE method are presented in detail. Several selected numerical examples of the transient heat conduction problems are presented to illustrate the performance of the CVRKP-FE method.  相似文献   

2.
陈丽  程玉民 《物理学报》2008,57(10):6047-6055
在重构核粒子法的基础上,引入复变量,讨论了复变量重构核粒子法.复变量重构核粒子法的优点是在构造形函数时采用一维基函数建立二维问题的修正函数.然后,将复变量重构核粒子法应用于瞬态热传导问题的求解,结合瞬态热传导问题的Galerkin积分弱形式,采用罚函数法引入本质边界条件,建立了瞬态热传导问题的复变量重构核粒子法,推导了相应的计算公式.与传统的重构核粒子法相比,复变量重构核粒子法具有计算量小、精度高的优点.最后通过数值算例证明了该方法的有效性. 关键词: 重构核粒子法 复变量重构核粒子法 修正函数 瞬态热传导问题  相似文献   

3.
On the basis of the complex variable moving least-square (CVMLS) approximation, a complex variable meshless local Petrov-Galerkin (CVMLPG) method is presented for transient heat conduction problems. The method is developed based on the CVMLS approximation for constructing shape functions at scattered points, and the Heaviside step function is used as a test function in each sub-domain to avoid the need for a domain integral in symmetric weak form. In the construction of the well-performed shape function, the trial function of a two-dimensional (2D) problem is formed with a one-dimensional (1D) basis function, thus improving computational efficiency. The numerical results are compared with the exact solutions of the problems and the finite element method (FEM). This comparison illustrates the accuracy as well as the capability of the CVMLPG method.  相似文献   

4.
<正>In this paper,based on the improved complex variable moving least-square(ICVMLS) approximation,a new complex variable meshless method(CVMM) for two-dimensional(2D) transient heat conduction problems is presented. The variational method is employed to obtain the discrete equations,and the essential boundary conditions are imposed by the penalty method.As the transient heat conduction problems are related to time,the Crank-Nicolson difference scheme for two-point boundary value problems is selected for the time discretization.Then the corresponding formulae of the CVMM for 2D heat conduction problems are obtained.In order to demonstrate the applicability of the proposed method,numerical examples are given to show the high convergence rate,good accuracy,and high efficiency of the CVMM presented in this paper.  相似文献   

5.
A meshless numerical model is developed for analyzing transient heat conductions in three-dimensional (3D) axisymmetric continuously nonhomogeneous functionally graded materials (FGMs). Axial symmetry of geometry and boundary conditions reduces the original 3D initial-boundary value problem into a two-dimensional (2D) problem. Local weak forms are derived for small polygonal sub-domains which surround nodal points distributed over the cross section. In order to simplify the treatment of the essential boundary conditions, spatial variations of the temperature and heat flux at discrete time instants are interpolated by the natural neighbor interpolation. Moreover, the using of three-node triangular finite element method (FEM) shape functions as test functions reduces the orders of integrands involved in domain integrals. The semi-discrete heat conduction equation is solved numerically with the traditional two-point difference technique in the time domain. Two numerical examples are investigated and excellent results are obtained, demonstrating the potential application of the proposed approach.  相似文献   

6.
The meshless local Petrov–Galerkin (MLPG) method in conjunction with the modified precise time step integration method in the time domain is proposed for transient heat conduction analysis in this paper. The MLPG method is often referred to as a truly meshless method because it requires no elements or background cells for either field interpolation or background integration. Local weak forms are developed using weighted residual method locally from the partial differential equation of transient heat conduction. In order to simplify the treatment of essential boundary conditions, the natural neighbour interpolation (NNI) is employed for the construction of trial functions. Moreover, the three-node triangular FEM shape functions are taken as test functions to reduce the order of integrands involved in domain integrals. The semi-discrete heat conduction equation is solved numerically with modified precise time step integration method in the time domain. The availability and accuracy of the present method for transient heat conduction analysis are tested through numerical examples.  相似文献   

7.
The Modified Smoothed Particle Hydrodynamics (MSPH) method proposed earlier by the authors and applied to the analysis of transient two-dimensional (2-D) heat conduction, 1-D transient simple shearing deformations of a thermoviscoplastic material, 1-D wave propagation in a functionally graded plate, and 2-D elastodynamic crack propagation is extended to the analysis of axisymmetric deformations of a thermoviscoplastic material. In the MSPH method, different shape functions are used to find kernel estimates of the function, and of its first and second derivatives. It differs from the classical finite element method in which derivatives of a function are usually obtained by differentiating the shape function used to approximate the function. It is shown that results computed with the MSPH method for the Noh problem agree well with its analytical solution. The MSPH basis functions can be used in any meshless method to numerically solve either static or dynamic problems. The method is then applied to analyze transient deformations of a cylindrical rod impacting at normal incidence a rigid smooth stationary flat plate. The computed solution is found to agree very well with those obtained by analyzing axisymmetric and 3-D transient deformations of the rod with the commercial code LS-DYNA. The final length of the deformed rod, the final radius of the impacted face, and the final length of the relatively undeformed portion of the rod for twelve test configurations computed with the MSPH method are also found to agree well with their corresponding experimental values.  相似文献   

8.
胡金秀  高效伟 《物理学报》2016,65(1):14701-014701
提出了一种基于边界元法求解变系数瞬态热传导问题的特征正交分解(POD)降阶方法,重组并推导出变系数瞬态热传导问题适合降阶的边界元离散积分方程,建立了变系数瞬态热传导问题边界元格式的POD降阶模型,并用常数边界条件下建立的瞬态热传导问题的POD降阶模态,对光滑时变边界条件瞬态热传导问题进行降阶分析.首先,对一个变系数瞬态热传导问题,建立其边界域积分方程,并将域积分转换成边界积分;其次,离散并重组积分方程,获得可用于降阶分析的矩阵形式的时间微分方程组;最后,用POD模态矩阵对该时间微分方程组进行降阶处理,建立降阶模型并对其求解.数值算例验证了本文方法的正确性和有效性.研究表明:1)常数边界条件下建立的低阶POD模态矩阵,能够用来准确预测复杂光滑时变边界条件下的温度场结果;2)低阶模型的建立,解决了边界元法中采用时间差分推进技术求解大型时间微分方程组时求解速度慢、算法稳定性差的问题.  相似文献   

9.
王磊磊  纪乐  马文涛 《计算物理》2020,37(2):173-181
提出一种求解二维功能梯度材料(FGMs)稳态热传导问题的重心Lagrange插值配点法.基于Chebyshev节点构造二维重心Lagrange插值函数及其偏导数,然后基于配点法将其直接代入FGMs热传导问题的控制方程和边界条件,得到系统离散方程.重心Lagrange插值配点法是一种真正的无网格方法,很好地融合了重心Lagrange插值和配点格式的优势,具有高效、稳定、高精度和易于数值实现的优点.采用重心Lagrange插值配点法分别对指数型、二次型和三角型FGMs热传导问题进行数值模拟.结果表明:该方法具有较高的计算效率和计算精度,对材料梯度参数的变化不敏感.可以进一步拓展到FGMs瞬态问题和FGMs的热力耦合分析.  相似文献   

10.
将格子玻尔兹曼方法应用于非线性热传导方程的求解,详细推导一种新的Lattice Boltzmann模型,并给出新方法所对应的多尺度方案和宏观量形式.导热系数与温度之间满足多项式函数关系,计算中模拟了不同的参数情况,并与线性热传导方程的理论解进行比较.新的Lattice Boltzmann方法展现出极大的灵活性和普适性,具有很好的应用前景.  相似文献   

11.
吴兆春 《物理学报》2010,59(9):6326-6330
本文采用变域变分原理,建立了导热几何形状反演问题的变分原理,同时获得了该问题所需满足的边界条件和附加条件.该变分原理能将未知形状的几何变量及控制方程结合在一个变分泛函中,使得数学描述简洁、紧凑,且几何变量及控制方程的求解能耦合地进行.介绍了运用该变分原理并结合有限元方法进行数值计算的方法. 关键词: 几何形状反演 变分原理 有限元 导热  相似文献   

12.
点源热传导问题和集中力作用梁变形问题的数学模型中,源项为奇异的Delta函数.采用数值稳定性好的重心型插值近似未知函数,利用Delta函数与Heaviside函数的导数关系以及Delta函数的积分筛选性,建立求解含有奇异源项问题的重心插值配点法和重心插值Galerkin法.通过数值算例比较两个方法的有效性和计算精度.  相似文献   

13.
In this study, a general methodology for determining the thermal conductance between the probe tip and the workpiece during microthermal machining using Scanning Thermal Microscopy (SThM) has been proposed. The processing system was considered as an inverse heat conduction problem with an unknown thermal conductance. Temperature dependence for the material properties and thermal conductance in the analysis of heat conduction is taken into account. The conjugate gradient method is used to solve the inverse problem. Furthermore, this methodology can also be applied to estimate the thermal contact conductance in other transient heat conduction problems, like metal casting process, injection molding process, and electronic circuit systems.  相似文献   

14.
Abstract

This article aims to employ a two-dimensional inverse heat conduction technique in designing an experiment for accurately estimating the local convective heat transfer coefficient in slot jet impingement, given temperature measurements at some interior locations in the target plate. The method uses a sequential procedure together with the Beck function specification approach. Solution accuracy and experimental errors are examined using simulated temperature data. It is concluded that a good estimation of the space variable heat transfer coefficient can be made from the knowledge of the transient temperature recordings. The technique is used in a series of numerical experiments to provide the optimum experimental design for a slot jet impingement heat transfer investigation.  相似文献   

15.
程荣军  葛红霞 《中国物理 B》2010,19(9):90201-090201
Steady-state heat conduction problems arisen in connection with various physical and engineering problems where the functions satisfy a given partial differential equation and particular boundary conditions, have attracted much attention and research recently. These problems are independent of time and involve only space coordinates, as in Poisson’s equation or the Laplace equation with Dirichlet, Neuman, or mixed conditions. When the problems are too complex, it is difficult to find an analytical solution, the only choice left is an approximate numerical solution. This paper deals with the numerical solution of three-dimensional steady-state heat conduction problems using the meshless reproducing kernel particle method (RKPM). A variational method is used to obtain the discrete equations. The essential boundary conditions are enforced by the penalty method. The effectiveness of RKPM for three-dimensional steady-state heat conduction problems is investigated by two numerical examples.  相似文献   

16.
The steady-state ignition of a catalytic vertical plate immersed in a combustible gas is analysed using asymptotic and numerical techniques. The analysis is restricted to the case where the catalytic activity is assumed to be on one lateral surface of the plate, causing an asymmetrical heat transfer distribution. The influence of the transversal and the longitudinal heat conduction effects through the plate are clarified, showing well defined ignition and extinction conditions (an S-shaped curve) for high activation energy. The catalytic ignition is easier to achieve as the value of the non-dimensional longitudinal thermal conductance of the plate increases in the thermally thin wall regime, while the converse is true for the thermally thick wall regime.  相似文献   

17.
应用三次B样条插值函数与二类变量广义变分原理建立一种样条混合元法来求解板壳结构的弯曲问题。应用样条函数来构造壳体的二类场函数:一类为位移场函数,另一类为广义力场函数,由二类变量广义变分原理导出样条混合元法的系统方程组。给出若干数值算例,其计算结果与其它方法作了比较。  相似文献   

18.
瞬态热传导问题的一阶对称SPH方法模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
蒋涛  欧阳洁  栗雪娟  张林  任金莲 《物理学报》2011,60(9):90206-090206
为提高传统光滑粒子动力学(smoothed particle hydrodynamics, SPH)方法模拟瞬态热传导问题的精度和稳定性,本文提出了一种一阶对称光滑粒子动力学(first order symmetric SPH, FO-SSPH)方法.该方法将具有二阶热传导方程分解成两个一阶偏微分方程,然后基于梯度离散和Taylor级数展开思想,对一阶核梯度形式进行修正,并将得到的局部矩阵对称化.数值结果表明:与传统SPH方法相比,FO-SSPH方法精度高、数值稳定性好; 该方法能较准确地直接施加混合边值 关键词: 瞬态热传导 光滑粒子动力学 非线性  相似文献   

19.
基于Reissner-Mindlin板弯曲理论,将Kriging插值无网格法应用于中厚板弯曲问题,推导相应的离散方程.该方法可以只依赖于一组离散的节点建立试函数,有效地避免了复杂的网格划分和网格畸变的影响.相对于无网格法中常用的移动最小二乘近似而言,滑动Kriging插值法的形函数满足Kronecker delta函数性质,可以直接施加本质边界条件.算例分析表明,用Kriging插值无网格法分析中厚板弯曲问题,具有效率高,精度高和易于实现等优点.  相似文献   

20.
王俊峰  李晋英 《应用光学》2014,35(6):960-965
针对瞬态高温的测量难题,采用辐射式测温技术和接触式测温技术有机结合的方法,设计了由黑体辐射温度敏感体、圆柱状高强度金属外壳以及壳内信号调理电路构成的瞬态高温测量装置。通过对感温薄膜特殊材料的恰当选取以及整体结构的合理设计,并利用ANSYS软件对其黑体感温薄膜进行了瞬态高温热传导分析。分析表明,施加的温度载荷为2 000 ℃、2 500 ℃、3 000 ℃时,此温度传感器响应时间分别为487.001 s、545.001 s、590.001 s,能够克服传统瞬态温度传感器体积大、响应慢、安装不方便以及易受恶劣环境因素影响等不足,在测温技术领域具有良好的应用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号