共查询到20条相似文献,搜索用时 0 毫秒
1.
We design and analyze a novel multiband left-handed metamaterial based on a fishnet-like structure at terahertz (THz) frequencies.The metamaterial exhibits simultaneous negative refractions around the frequencies of 0.48,1.05,and 1.19 THz for the electromagnetic (EM) wave normal incidence,and around the frequencies of 0.20,0.79,and 1.13 THz for parallel incidence.The simulated results verify the left-handed properties.A particularly important observation is the capability of the proposed metamaterial with a single geometrical structure to display multifrequency operations in a unit cell.The compact metamaterial is a major step toward the miniaturization of THz materials and devices suitable for multifrequencies. 相似文献
2.
Utilizing terahertz time domain spectroscopy, we have characterized the electromagnetic response of a planar array of split ring resonators (SRRs) fabricated upon a high resistivity GaAs substrate. The measured frequency dependent magnetic and electric resonances are in excellent agreement with theory and simulation. For two polarizations, the SRRs yield a negative electric response (epsilon < 0). We demonstrate, for the first time, dynamical control of the electrical response of the SRRs through photoexcitation of free carriers in the substrate. An excited carrier density of approximately 4 x 10(16) cm(-3) is sufficient to short the gap of the SRRs, thereby turning off the electric resonance, demonstrating the potential of such structures as terahertz switches. Because of the universality of metamaterial response over many decades of frequency, these results have implications for other regions of the electromagnetic spectrum. 相似文献
3.
We present the design of a multiband left-handed three-dimensional (3D) metamaterial based on improved fishnet structure at terahertz frequencies. The design realizes a three-dimensional material by mechanical stacking of multiple layers. The electromagnetic properties of the metamaterial have been investigated by numerical simulation. The results show that simultaneously negative values of permittivity, permeability and refractive index are found around the frequencies of 0.73, 0.85 and 1.12 THz for the electromagnetic wave normal incidence. The proposed metamaterial with independent polarization and compact effect offers a way to develop THz 3D materials and devices suitable for multifrequencies. 相似文献
4.
Tunable electromagnetically induced transparency at terahertz frequencies in coupled graphene metamaterial
下载免费PDF全文

《中国物理 B》2015,(11)
A graphene-based metamaterial with tunable electromagnetically induced transparency(EIT)-like transmission is numerically studied in this paper. The proposed structure consists of a graphene layer composed of coupled cut-wire pairs printed on a substrate. The simulation confirms that an EIT-like transparency window can be observed due to indirect coupling in a terahertz frequency range. More importantly, the peak frequency of the transmission window can be dynamically controlled over a broad frequency range by varying the Fermi energy levels of the graphene layer through controlling the electrostatic gating. The proposed metamaterial structure offers an additional opportunity to design novel applications such as switches or modulators. 相似文献
5.
In this paper, we propose a metamaterial film bounded by a nonlinear cover and a dielectric substrate as a THz wave sensor. The dispersion characteristics and magnetic field profiles have been derived, computed and analyzed. Confinement of the light waves was found to increase with both nonlinearity and frequency. We believe our results can be used to design novel tunable future sensors. 相似文献
6.
We present the simulation, implementation, and measurement of a polarization insensitive resonant metamaterial absorber in the terahertz region. The device consists of a metal/dielectric-spacer/metal structure allowing us to maximize absorption by varying the dielectric material and thickness and, hence, the effective electrical permittivity and magnetic permeability. Experimental absorption of 77% and 65% at 2.12 THz (in the operating frequency range of terahertz quantum cascade lasers) is observed for a spacer of polyimide or silicon dioxide respectively. These metamaterials are promising candidates as absorbing elements for thermally based terahertz imaging. 相似文献
7.
Microelectromechanical systems bimaterial terahertz sensor with integrated metamaterial absorber 总被引:1,自引:0,他引:1
This Letter describes the fabrication of a microelectromechanical systems (MEMS) bimaterial terahertz (THz) sensor operating at 3.8 THz. The incident THz radiation is absorbed by a metamaterial structure integrated with the bimaterial. The absorber was designed with a resonant frequency matching the quantum cascade laser illumination source while simultaneously providing structural support, desired thermomechanical properties and optical readout access. Measurement showed that the fabricated absorber has nearly 90% absorption at 3.8 THz. A responsivity of 0.1°/μW and a time constant of 14 ms were observed. The use of metamaterial absorbers allows for tuning the sensor response to the desired frequency to achieve high sensitivity for potential THz imaging applications. 相似文献
8.
We present the simulation, implementation, and measurement of a polarization insensitive broadband resonant terahertz metamaterial absorber. By stacking metal-insulator layers with differing structural dimensions, three closely positioned resonant peaks are merged into one broadband absorption spectrum. Greater than 60% absorption is obtained across a frequency range of 1.86?THz where the central resonance frequency is 5?THz. The FWHM of the device is 48%, which is two and half times greater than the FWHM of a single layer structure. Such metamaterials are promising candidates as absorbing elements for bolometric terahertz imaging. 相似文献
9.
Relativistic effects are employed to describe the weakly bound nuclei of \({}^{17}\)F and \({}^{11}\)Be. In order to calculate the energy levels of the ground state and the excited states of these nuclei, we solved the Dirac equation with pseudospin symmetry in the shell model by using the basic concept of supersymmetric shape invariance method. The results obtained from this approach are compared with a non-relativistic approach and experiment. It was then seen that the relativistic approach matches more with the experimental results. 相似文献
10.
An equivalent circuit model for the analysis and design of terahertz (THz) metamaterial filters is presented.The proposed model,derived based on LMC equivalent circuits,takes into account the detailed geometrical parameters and the presence of a dielectric substrate with the existing analytic expressions for self-inductance,mutual inductance,and capacitance.The model is in good agreement with the experimental measurements and full-wave simulations.Exploiting the circuit model has made it possible to predict accurately the resonance frequency of the proposed structures and thus,quick and accurate process of designing THz device from artificial metamaterials is offered. 相似文献
11.
Metamaterial absorbers have attracted considerable attention for applications in the terahertz range. In this Letter, we report the design, fabrication, and characterization of a terahertz dual band metamaterial absorber that shows two distinct absorption peaks with high absorption. By manipulating the periodic patterned structures as well as the dielectric layer thickness of the metal-dielectric-metal structure, significantly high absorption can be obtained at specific resonance frequencies. Finite-difference time-domain modeling is used to design the structure of the absorber. The fabricated devices have been characterized using a Fourier transform IR spectrometer. The experimental results show two distinct absorption peaks at 2.7 and 5.2?THz, which are in good agreement with the simulation. The absorption magnitudes at 2.7 and 5.2?THz are 0.68 and 0.74, respectively. 相似文献
12.
We report the design and simulation of a dual-band perfect terahertz absorber which is composed of an electric Split-Resonance-Ring(eSRR) layer, polyimide spacer and a metal plate layer. The absorber has two near-unity absorptions near 0.502 THz and 0.942 THz and both are related to the LC resonance of the eSRR. The results show that the designed terahertz absorber is an excellent electromagnetic wave concentrator. The electromagnetic waves are firstly converged into the spacer and the eSRR layer and are th... 相似文献
13.
We report the design and simulation of a dual-band perfect terahertz absorber which is composed of an electric Split-Resonance-Ring(eSRR) layer, polyimide spacer and a metal plate layer. The absorber has two near-unity absorptions near 0. 502 THz and 0. 942 THz and both are related to the LC resonance of the eSRR. The results show that the designed terahertz absorber is an excellent electromagnetic wave concentrator. The electromagnetic waves are firstly converged into the spacer and the eSRR layer and are then significantly absorbed. 相似文献
14.
15.
《中国光学快报(英文版)》2017,(5)
The plasmonic mode in graphene metamaterial provides a new approach to manipulate terahertz(THz) waves.Graphene-based split ring resonator(SRR) metamaterial is proposed with the capacity for modulating transmitted THz waves under normal and oblique incidence. Here, we theoretically demonstrate that the resonant strength of the dipolar mode can be significantly enhanced by enlarging the arm-width of the SRR and by stacking graphene layers. The principal mechanism of light–matter interaction in graphene metamaterial provides a dynamical modulation based on the controllable graphene Fermi level. This graphene-based design paves the way for a myriad of important THz applications, such as optical modulators, absorbers, polarizers, etc. 相似文献
16.
D. S. Kozlov M. A. Odit I. B. Vendik Young-Geun Roh Sangmo Cheon Chang-Won Lee 《Applied Physics A: Materials Science & Processing》2012,106(3):465-470
Tunable metamaterial operating in terahertz (THz) frequency range based on dielectric cubic particles with deposited conducting
resonant strip was investigated. The frequency of the first magnetic type Mie resonance depends on the electric length of
the strip. It can be changed under photoexcitation or applied voltage. This method of control was used for a design of tunable
double negative metamaterial based on dielectric resonant inclusions and wire medium. 相似文献
17.
Broadband terahertz metamaterial absorbers have attracted considerable attention due totheir significant potential for practical applications. These absorbers are usuallystacked in several differently shaped or sized subunits to form a unit cell, making theirfabrication quite troublesome. A simple design for broadband metamaterial absorbers istherefore urgently needed. Herein, we propose a coplanar broadband andpolarisation-insensitive perfect absorber formed by two patterned square metallic ringswith a dielectric layer on top of a metallic ground plane. The full width at half maximum(FWHM) of the device can be up to 42% (with respect to the central frequency), which is 2times greater than that of a single-layered structure. This property is retained well fora very wide range of incident angles. The two patterned square rings resonating atdifferent but similar frequencies leads to the broadband absorption. Moreover, ahybridised resonance model is proposed to analyse the origin of the resonance bandwidth.The results of this metamaterial absorber design appear to be very promising for solarcell, detection and imaging applications. 相似文献
18.
We introduce a metamaterial design composed of square plasmonic loops loaded by Kerr nonlinearities that combines enhanced nonlinear response with strong artificial magnetism, ensuring a negative refractive index with bistable and self-tunable response. We verify with full-wave simulations that positive-to-negative switching of refractive index may be obtained with moderate loss. The design of a finite-size metamaterial prism is also presented, supporting at the same frequency, and for the same light intensity, positive or inverted Snell refraction as a function of its previous excitation history. 相似文献
19.
We propose a multilayer complementary metamaterial structure fabricated on a crystal quartz substrate measuring between 100 and 700 GHz. The concept of a second-order terahertz bandpass filter is realized by this structure, and it offers a superior quality factor, steepness of skirts, and out-of-band rejection. Physical limitations on the quality factor and insertion loss have also been studied, including the skin depth of the metal and the optical phonon resonance in quartz. Based on these factors, a series of higher frequency filters has been designed, and simulation results are presented. 相似文献
20.
David R.S. Cumming 《Optics Communications》2006,259(1):373-377
Beam-steering techniques are required to fully exploit the benefits of present and future terahertz imaging systems. We propose and model a device that overcomes the difficulties that prevent analogues of existing electrical and optical micro-mechanical techniques being employed at terahertz frequencies. The device employs a variable phase-control medium comprised of interlocking artificial dielectric surfaces. We present an analytical array factor calculation that provides insight into the operation of the device and an improved discrete array factor model incorporating the complex transmission coefficients of the structure. The models are validated by comparison to results from a rigorous full-vector electromagnetic solver tool (finite-difference time-domain). We predict a practical device constructed from a silicon substrate could steer both TE and TM beams by up to 6.4°. 相似文献