首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Phase separation in Sr doped BiMnO3 (Bil_xSrxMnO3, x = 0.4-0.6) was studied by means of temperature-dependent high-resolution neutron powder diffraction (NPD), high resolution X-ray powder diffraction (XRD), and physical property measurements. All the experiments indicate that a phase separation occurs at the temperature coinciding with the reported charge ordering temperature (Tco) in the literature. Below the reported TCO, both the phases resulting from the phase separation crystallize in the orthorhombically distorted perovskite structure with space group Imma. At lower temperature, these two phases order in the CE-type antiferromagnetic structure and the A-type antiferromagnetic structure, respectively. However, a scrutiny of the high-resolution NPD and XRD data at different temperatures and the electron diffraction exper- iment at 300 K did not manifest any evidence of a long-range charge ordering (CO) in our investigated samples, suggesting that the anomalies of physical properties such as magnetization, electric transport, and lattice parameters at the TCO might be caused by the phase separation rather than by a CO transition.  相似文献   

2.
A precision X-ray diffraction study of PbFe0.5Nb0.5O3 crystal in a paraelectric phase at 160°C has shown the presence of small disordered displacements of the Pb atoms from their sites in the ideal perovskite structure. Several models of such displacements were considered. The lowest discrepancy factor R is 0.0472.  相似文献   

3.
BaBi0.7Nb0.3O3, an ordered perovskite, crystallizes in a centrosymmetric rhombohedral structure with the space group R3¯. The refined cell parameters obtained from synchrotron powder X-ray diffraction data for the rhombohedral phase at ambient pressure are a=6.109 (2) Å and α=60.3 (1)°. The pressure-dependent synchrotron powder X-ray diffraction studies show a phase transition around 8.44±1 GPa, where it transforms from rhombohedral structure to a monoclinic structure. The lattice parameters obtained for the monoclinic phase at a pressure of 15±1 GPa are a=5.91 (2) Å, b=6.25 (3) Å and c=8.22 (1) Å with monoclinic angle, β=88 (1)°.  相似文献   

4.
The influence of the silver Ag-substitution for Pb ions in the mixed valence perovskites La0.67Pb0.33−xAgxMnO3 (0≤x≤0.15) was investigated by X-ray magnetic and electric transport measurements. All compositions were synthesized using the sol-gel technique. X-ray diffraction and structure refinement show that they crystallize in the rhombohedral structure with the R3?c space group. Upon Ag doping on Pb sites, the lattice parameters, unit cell volume, and the Mn-O-Mn bond angle are reduced. All the samples exhibit a ferromagnetic-paramagnetic transition and metallic-semi-conductor one with increasing temperature. The substitution of Pb by Ag has great influence on the magnetic and electrical transport properties of this family of compounds, decreasing continuously both the Curie temperature (from 361 to 290 K) and the resistivity transition temperature Tp.  相似文献   

5.
A. K. Bera  S. M. Yusuf  A. Jain 《Pramana》2008,71(5):917-921
The brownmillerite-type layered compound Ca2.375La0.125Sr0.5GaMn2O8 has been synthesized. The crystal and magnetic structures have been refined by the Rietveld analysis of the neutron powder diffraction patterns at 300 and 20 K. This compound crystallizes in the orthorhombic symmetry under the space group Pcm21 (a = 5.447(2), b = 11.359(4) and c = 5.322(2) Å). The compound is found to be antiferromagnetic at 20 K. The ordered Mn magnetic moment, aligned along the crystallographic b-direction, is derived to be 2.53(5) µB per Mn ion at 20 K.  相似文献   

6.
The structural phase transition from orthorhombic (T) phase to tetragonal (T′) phase in substituted La2−x R x CuO4 (R = Pr, Nd, Sm, Eu and Gd) and T′ to T-phase in Pr2−x M x CuO4−y (M = Sr, Ca) has been studied by X-ray diffraction technique. The T-phase of La2CuO4 is transferred to T′ phase abruptly atx=0.8, 0.4, 0.4, 0.3 and 0.4 respectively for substitution of Pr, Nd, Sm, Eu and Gd for La in La2CuO4 without evidence of the T* phase. The T′ structure of Pr2CuO4 (x = 0.0) gets transformed to the T* structure at 30% Ca doping (x=0.6) and then to the T structure at 50% Ca doping (x=1.0), while for Sr-contentx=0.0, 0.4 and 1.0 it shows T′, T* and T structure respectively.  相似文献   

7.
8.
Eu3+-doped Na2Ti6O13 (Na2Ti6O13:Eu) nanorods with diameters of 30 nm and lengths 400 nm were synthesized by hydrothermal and heat treatment methods. Raman spectra at ambient conditions indicated a pure monoclinic phase (space group C2/m) of the nanorods. The relations between structural and optical properties of Na2Ti6O13:Eu nanorods under high pressures were obtained by photoluminescence and Raman spectra. Two structural transition points at 1.39 and 15.48 GPa were observed when the samples were pressurized. The first transition point was attributed to the crystalline structural distortion. The later transition point was the result of pressure-induced amorphization, and the high-density amorphous (HDA) phase formed after 15.48 GPa was structurally related to the monoclinic baddeleyite structured TiO2 (P21/c). However, the site symmetry of the local environment around the Eu3+ ions in Na2Ti6O13 increased with the rising pressure. These above results indicate the occurrence of short-range order for the local asymmetry around the Eu3+ ions and long-range disorder for the crystalline structure of Na2Ti6O13:Eu nanorods by applying pressure. After releasing the pressure from 22.74 GPa, the HDA phase is transformed to low-density amorphous form, which is attributed to be structurally related to the α-PbO2-type TiO2.  相似文献   

9.
The existence of three main crystalline phases (called III, II and I) in (C12H25NH3)2CdCl4 has been revealed by differential scanning calorimetry. X-ray diffraction and spectroscopic studies. The crystal- lographic evolution with increasing temperature appears to be monoclinic (III) → orthorhombic (II) → tetragonal (I). The low temperature phase III is the only ordered structure. The phase transition (III-II), which is of first order type, corresponds to an order-disorder mechanism involving the organic part of the structure (alkylammonium chains) whereas the phase transition (II-I), which is of second-order type, is related to the arrangement of the mineral matrix (octahedra of perovskite layers). An intermediate disordered form II', stable in a very narrow temperature range and structurally similar to the form II, has also been observed, so that the transformation (III-II) proceeds, in fact, in two steps (III-II'-II). The variation enthalpies observed at the transitions (III-II'-II) and analyzed through an order-disorder mechanism demonstrate the high disorder of the alkylammonium chains in form II, in agreement with spectroscopic results. No thermal anomaly or spectroscopic modification is observed for the high temperature transition (II-I).  相似文献   

10.
The structural phase transitions and the electrical behaviour of the complex perovskite PbLu1/2Nb1/2O3 have been investigated using X-ray powder diffraction, dielectric constant measurements, differential scanning calorimetry and measurement of the polarisation as a function of applied electric field. The high-temperature paraelectric phase is highly ordered. A first-order paraelectric-antiferroelectric phase transition occurs at 270°C and an antiferroelectric-ferroelectric phase transition, characterised by dispersion in the curves of dielectric constant as a function of temperature, occurs at ≈ 30°C. The antiferroelectric phase is isostructural with the orthorhombic form of PbYb1/2Nb1/2O3. The low-temperature ferroelectric phase also has an orthorhombic crystal structure.  相似文献   

11.
The solid solution series (2ZnX)x (CuInX2)1−x (X=S, Se, Te) were studied by the combination of laboratory and synchrotron X-ray and by neutron powder diffraction. Within the homologous series the tetragonal distortion ¼-u increases in the sequence S→Se→Te whereas the tetragonal deformation η=c/2a decreases. Besides that, with increasing 2ZnX content in CuInX2 the anion position parameter u increases as expected. The cation site occupancy in the chalcopyrite type phase of single phase tetragonal samples was obtained by Rietveld analysis of the neutron diffraction data. A non-statistic Zn distribution could be deduced for all three systems. The high temperature in situ diffraction experiments with synchrotron radiation on CuInX2 powder samples revealed the Cu-In anti-site occupation as the driving force of the temperature dependent phase transition from the chalcopyrite to the zinc-blende type structure.  相似文献   

12.
13.
In this paper a novel and simple route for the preparation of copper ferrite (CuFe2O4) is proposed. The present investigation reports, the novel synthesis of CuFe2O4 samples C1, C2, C3 and C4 using hydrothermal method and its physicochemical characterization. In order to elucidate the relationship between the constituent, structure, magnetic and PL properties product's particle size, morphological and structural properties were characterized by the X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), photoluminescence (PL) and magnetic properties. The crystallization, surface morphology, magnetic properties and luminescence properties of the samples have been investigated. The relatively high Ms of the samples suggests that this method is suitable for preparing high-quality nanocrystalline copper ferrites for practical applications. Different mechanisms to explain the obtained results and the correlation between magnetism and structure are discussed.  相似文献   

14.
The effect of the heat treatment on the corrosion behaviour of amorphous Fe85Cr5P6C3Si alloy in 0.5 M H2SO4 has been investigated using electrochemical techniques. Heat treatment was carried out at temperatures varying between 250 and 650 °C at different times 30, 60, 120 and 240 min. The evolution of crystallization processes after annealing was identified by differential thermal analysis (DTA) and by X-ray diffraction (XRD). The diagrams obtained by DTA show that the structure of samples treated at high temperature changes towards a crystalline state. This crystallization phenomenon is confirmed by the analysis with the XRD. The results obtained from the polarization curves reveal that for all the studied temperatures of annealing, Fe-Cr-P-C-Si exhibits a phenomenon of passivation without breakdown of passivity. The best corrosion resistance is obtained at the temperature of annealing 350 °C. For an annealing at higher temperatures, Fe85Cr5P6C3Si becomes less corrosion resistant than same amorphous alloy treated with temperatures lower than 350 °C.  相似文献   

15.
The structure of the ordered double perovskite Ba2CuUO6 has been investigated between room temperature and 800 °C using synchrotron X-ray powder diffraction. At room temperature Ba2CuUO6 is tetragonal, space group I4/m, a=8.82331(13) c=8.82330(13) Å, the structure being characterized by a large Jahn-Teller distortion of the CuO6 octahedra and small out-of-phase tilts of the BO6 octahedra. This Jahn-Teller distortion is also evident in the UV-Vis spectra. Analysis of the spontaneous tetragonal strain reveals a continuous ferroelastic phase transition near 420 °C. This appears to be related to the loss of the tilts whilst maintaining the Jahn-Teller distortion, so that the high temperature structure is in space group I4/mmm.  相似文献   

16.
The effect of post sintering annealing on the dielectric response of (Pb1−xBax)(Yb0.5Ta0.5)O3 ceramics in the diffuse phase transition range (x=0.2) has been investigated. The samples are prepared by conventional solid-state reaction method. The samples are sintered at 1300 °C for 2 h and annealed at different temperatures (800, 900 and 1000 °C) for 8 h and at 800 °C for different time durations (8, 12 and 24 h). A significant change in the dielectric response has been observed in all the samples. The dielectric constant increases remarkably and the dielectric loss tangent decreases. The dielectric peaks of the annealed samples are observed to be more diffused with noticeable frequency dispersion compared to the as sintered sample.  相似文献   

17.
Boundaries of morphotropic phase transitions region in the system of solid solutions K2Pb4Nb10O30-Na2Pb4Nb10O30-K6W4Nb6O30 with the structure of the tetragonal tungsten bronze have been specified. Presence of the second morphotropic phase transition, perpendicular to the first one has been revealed. The temperature dependences of the structural parameters of some compounds have been investigated. The compounds with high values of Curie temperatures and working temperatures have been obtained.  相似文献   

18.
The crystal and magnetic structures of the composite compound Nd2Co6Fe have been investigated by high-resolution neutron powder diffraction and X-ray powder diffraction. The compound crystallizes in the hexagonal Ce2Ni7-type structure consisting of Nd(Co,Fe)2 and Nd(Co,Fe)5 structural blocks alternately stacked along the c-axis. Multi-pattern Rietveld refinement of neutron diffraction and X-ray diffraction data at room temperature reveal that substitution of Fe for Co occurs exclusively in the Nd(Co,Fe)5 structural blocks. The preferential occupation of the Fe atoms in the structure is discussed based on the mixing enthalpy between Nd and Fe atoms and on the lattice distortions. In agreement with the reported magnetic phase diagram of the Nd2Co7−xFex compounds, magnetic structure models with the moments of all atoms in the ab plane at 300 K and along the c-axis at 450 K provide a satisfactory fitting to the experimental neutron diffraction data. The refinement results show that the atomic moments of (Co,Fe) atoms within the Nd(Co,Fe)5 blocks decrease slightly with temperature, whereas the atomic moments of Nd in the compound and of (Co,Fe) atoms at the interface between the Nd(Co,Fe)2 and Nd(Co,Fe)5 blocks are reduced significantly.  相似文献   

19.
The temperature and angular dependences of the EPR spectra of Mg[H2O]6SiF6:Mn2+ crystal were investigated in order to clarify the successive phase transitions and existence of the incommensurate phase. Five successive phase transitions were found to occur, and phase II was found to be incommensurately modulated. The modulated structure is caused mainly by the vibrational displacement of the Mg[H2O]2+ 6 ion along the c-axis. The soliton density of this phase is almost independent of temperature and remains equal to unity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号