首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structural, elastic, electronic, and thermodynamic properties of ZrxNbl xC alloys are investigated using the first principles method based on the density functional theory. The results show that the structural properties of Zr~.Nb1 xC alloys vary continuously with the increase of Zr composition. The alloy possesses both the highest shear modulus (215 GPa) and a higher bulk modulus (294 GPa), with a Zr composition of 0.21. Meanwhile, the Zr0.2! Nb0.79C alloy shows metallic conductivity based on the analysis of the density of states. In addition, the thermodynamic stability of the designed alloys is estimated using the calculated enthalpy of mixing.  相似文献   

2.
In recent several years, some works have been done on cosmic thermodynamics. The apparent horizon was regarded as the key characteristic supersurface where thermodynamics can be built on perfectly. However, if the irreversible process is considered, the proper position for building thermodynamics will not be the apparent horizon anymore. The new position is related to dark energy state equation and the irreversible process parameters.  相似文献   

3.
赵柳 《理论物理通讯》2010,(10):641-646
Erik Verlinde recently proposed an idea about the thermodynamic origin of gravity. Though this is a beautiful idea, which may resolve many long standing problems in the theories of gravity, it also raises many other problems. In this article I will comment on some of the problems of Verlinde's proposal with special emphasis on the thermodynamical origin of the principle of relativity. It is found that there is a large group of hidden symmetries of thermodynamics, which contains the Poincare group of the spacetime for which space is emergent. This explains the thermodynamic origin of the principle of relativity.  相似文献   

4.
Recently, a new noncommutative geometry inspired solution of the coupled Einstein Maxwell field equations including black holes in 4-dimension is found. In this paper, we generalize some aspects of this model to the Reissner Nordstrom (RN) like geometries with large extra dimensions. We discuss Hawking radiation process based on noncommutative inspired solutions. In this framework, existence of black hole remnant and possibility of its detection in LHC are investigated.  相似文献   

5.
We investigate the Hawking radiation of a GMGHS charged black hole from the heterotic string scenario by the massive particles turmeling method. We consider the spacetime background to be dynamical, incorporate the self-gravitation effect of the emitted particles and show that the tunneling rate is related to the change of Bekenstein- Hawking entropy and the derived emission spectrum does not deviate from the pure thermal spectrum of Schwrzschild's black hole.  相似文献   

6.
杨春燕  张蓉 《中国物理 B》2014,23(2):26301-026301
A detailed theoretical study of the structural, elastic, and optical properties for Sr0.5Ca0.5TiO3 is carried out by first- principles calculations. The band structure exhibits a direct bandgap of 2.08 eV at the F point in the Brillouin zone. The bulk modulus, shear modulus, Young's modulus, and Poisson's ratio are derived based on the calculated elastic constants. The bulk modulus B = 153 GPa and shear modulus G = 81GPa are in good agreement with available experimental data. Poisson's ratio v = 0.275 suggests that Sr0.sCa0.sTiO3 should be classified as being a ductile material. Using the electronic band structure and density of states, we analyze the interband contribution to the optical properties. The real and imaginary parts of the dielectric function, as well as the optical properties such as the optical absorption coefficient, refractive index, extinction coefficient, and energy-loss spectrum are calculated. The static dielectric constant ε1 (0) and the refractive index n(0) are also investigated.  相似文献   

7.
Based on the quark-gluon structure of nucleon and the existence of Odderon in nucleon via gluon selfinteraction, the elastic scattering of pp at high energies is studied. Our theoretical predictions reproduce experimental data perfectly. The contributions from individual terms of quark-quark, gluon-gluon interactions, quark-gluon interference and the Odderon terms to total cross section are analyzed. In addition to the leading quark-quark contribution, the Odderon contribution is quite important. In particular, the Odderon plays an essential role in fitting to data. Therefore, We may claim that the high energy pp and pp elastic scattering may be good processes to search for the Odderon, the three Reggeized gluon bound states.  相似文献   

8.
Shell model molecular dynamic simulation with interatomic pair potential is utilized to investigate the elastic and thermodynamic properties of gallium nitride with hexagonal wurtzite structure (w-GaN) at high pressure. The calculated elastic constants Cij at zero pressure and 300 K agree well with the experimental data and other calculated values. Meanwhile, the dependences of the relative volume V/Vo, elastic constants Cij, entropy S, enthalpy H, and heat capacities Cv and Up on pressure are successfully obtained. From the elastic constants obtained, we also calculate the shear modulus G, bulk modulus B, Young's modulus E, Poisson's ratio v, Debye temperature ΘD, and shear anisotropic factor Ashear on pressures.  相似文献   

9.
With the values of parameters obtained from improved ligand-field theory, by taking into account all the irreducible representations and their components in EPI as well as all the levels and the admixtures of basic wavefunctions within d^3 electronic configuration, the R-line thermal broadenings (TB) of both MgO:Cr^3+ and MgO:V^2+ have microscopic-theoretically been calculated, The results are in very good agreement with the experimental data. It is found that the R-line TB of MgO:Cr^3+ or MgO:V^2+ comes from the first-order term of EPI. The elastic Raman scattering of acoustic phonons plays a dominant role in R-line TB of MgO:Cr^3+ or MgO:V^2+.  相似文献   

10.
This paper performs first-principles calculations to study the structural, mechanical and electronic properties of the spinels ZnA1204, ZnGa2O4 and ZnCr2O4, using density functional theory with the plane-wave pseudopotential method. Our calculations are in good agreement with previous theoretical calculations and the available experimental data. The studies in this paper focus on the evolution of the mechanical properties of ZnAl2O4, ZnGa2O4 and ZnCr2O4 under hydrostatic pressure. The results show that the cubic phases of ZnAl2O4, ZnCa2O4 and ZnCr2O4 become unstable at about 50 GPa, 40 GPa and 25 GPa, respectively. From analysis of the band structure of the three compounds at equilibrium volume, it obtains a direct band gap of 4.35 eV for ZnA1204 and 0.89 cV for ZnCr2O4, while ZnGa2O4 has an indirect band gap of 2.73 eV.  相似文献   

11.
We investigate the structural and elastic properties of γTiAl under high pressures using the norm-conserving pseudopotentials within the local density approximation (LDA) in the frame of density functional theory. The calculated pressure dependence of the elastic constants is in excellent agreement with the experimental results. The elastic constants and anisotropy as a function of applied pressure are presented. Through the quasi-harmonic Debye model, we also investigate the thermodynamic properties of γTiAl.  相似文献   

12.
The plane-wave pseudo-potential method within the framework of ab initio technique is used to investigate the structural and elastic properties of α-and β-Si3N4. The ground-state parameters accord quite well with the experimental data. Our calculation reveals that α-Si3N4 can retain its stability to at least 40 GPa when compressed at 300 K. The α → β phase transformation would not occur in a pressure range of 0-40 (3Pa and a temperature range of 0 300 K. Actually, the α → β transition occurs at 1600 K and 7.98 GPa. For α-and β-Si3N4, the c axes are slightly more incompressible than the a axes. We conclude that β-Si3N4 is a hard material and ductile in nature. On the other hand, β-Si3N4 is also found to be an ionic material and can retain its mechanical stability in a pressure range of 0 - 010 GPa. Besides, the thermodynamic properties such as entropy, heat capacity, and Debye temperature of α-and β-Si3N4 are determined at various temperatures and pressures. Significant features in these properties are observed at high temperature. The calculated results are in good agreement with available experimental data and previous theoretical values. Many fundamental solid-state properties are reported at high pressure and high temperature. Therefore, our results may provide useful information for theoretical and experimental investigations of the Si3N4 polymorphs.  相似文献   

13.
First-principles calculations of structural, electronic, optical, elastic, mechanical properties, and Born effective charges of monoclinic HfO2 are performed with the plane-wave pseudopotential technique based on the density-functional theory. The calculated structural properties are consistent with the previous theoretical and experimental results. The electronic structure reveals that monoclinic HfO2 has an indirect band gap. The analyses of density of states and Mulliken charges show mainly covalent nature in Hf-O bonds. Optical properties, including the dielectric function, refractive index, extinction coefficient, reflectivity, absorption coefficient, loss function, and optical conductivity each as a function of photon energy are calculated and show an optical anisotropy. Moreover, the independent elastic constants, bulk modulus, shear modulus, Young's modulus, Poisson's ratio, compressibility, Lam6 constant, sound velocity, Debye temperature, and Born effective charges of monoclinic HfO2 are obtained, which may help to understand monoclinic HfO2 for future work.  相似文献   

14.
The influences of different buffer gas, neon and helium, on199Hg+clock transition are compared in trapped199Hg+linear trap. By the technique of time domain’s Ramsey separated oscillatory fields, the buffer gas pressure frequency shifts of199Hg+clock transition are measured to be(d f /dPNe)(1/ f) = 1.8 × 10-8Torr-1for neon and(d f /dPHe)(1/ f) = 9.1 × 10-8Torr-1for helium. Meanwhile, the line-width of199Hg+clock transition spectrum with the buffer gas neon is narrower than that with helium at the same pressure. These experimental results show that neon is a more suitable buffer gas than helium in199Hg+ions microwave frequency standards because of the199Hg+clock transition is less sensitive to neon variations and the better cooling effect of neon. The optimum operating pressure for neon is found to be about 1.0 × 10-5Torr in our linear ion trap system.  相似文献   

15.
Langevin simulations are preformed on the depinning dynamics of fluid monolayer on a quenched substrate. With increase in the strength of the substrate, we find for the first time a crossover from elastic crystal to smectic flows as well as a crossover from smectic to plastic flows above the depinning. A power-law scaling relationship can be derived between the drift velocity and the driving force for both the elastic crystal and smectic flows, but fails to be obtained for the plastic flow. The power-law exponents are found to be no larger than 1 for the elastic crystal flow and larger than 1 for the smeetic flow. The critical driving force and the averaged intensity of Bragg peaks remain invariant basically in the regime of smectic flow. A sudden increase in the critical driving force is observed within the crossover from the smeetic to plastic flows, and the averaged intensity of Bragg peaks shows sudden decreases within the crossovers both from the elastic crystal to smectic flows and from the smectic to plastic flows. The results are helpful for understanding the slip dynamics of fluids on a molecular level.  相似文献   

16.
First-principles study of structural, elastic, and electronic properties of the B20 structure OsSi has been reported using the plane-wave pseudopotential density functional theory method. The calculated equilibrium lattice and elastic constants are in good agreement with the experimented data and other theoretical results. The dependence of the elastic constants, the aggregate elastic modulus, the deviation from the Cauchy relation, the elastic wave velocities in different directions and the elastic anisotropy on pressure have been obtained and discussed. This could be the first quantitative theoretical prediction of the elastic properties under high pressure of OsSi compound. Moreover, the electronic structure calculations show that OsSi is a degenerate semiconductor with the gap value of 0.68 eV, which is higher than the experimental value of 0.26 eV. The analysis of the PDOS reveals that hybridization between Os d and Sip states indicates a certain covalency of the Os-Si bonds.  相似文献   

17.
Solid materials with cracks exhibit the nonclassical nonlinear acoustical behavior. The micro-defects in solid materials can be detected by nonlinear elastic wave spectroscopy (NEWS) method with a time-reversal (TR) mirror. While defects lie in viscoelastic solid material with different distances from one another, the nonlinear and hysteretic stress-strain relation is established with Preisach-Mayergoyz (PM) model in crack zone. Pulse inversion (PI) and TR methods are used in numerical simulation and defect locations can be determined from images obtained by the maximum value. Since false-positive defects might appear and degrade the imaging when the defects are located quite closely, the maximum value imaging with a time window is introduced to analyze how defects affect each other and how the fake one occurs. Furthermore, NEWS-TR- NEWS method is put forward to improve NEWS-TR scheme, with another forward propagation (NEWS) added to the existing phases (NEWS and TR). In the added phase, scanner locations are determined by locations of all defects imaged in previous phases, so that whether an imaged defect is real can be deduced. NEWS-TR-NEWS method is proved to be effective to distinguish real defects from the false-positive ones. Moreover, it is also helpful to detect the crack that is weaker than others during imaging procedure.  相似文献   

18.
The ^13 N+p elastic resonance scattering has been studied at the secondary radioactive beam facility of CIAE in inverse kinematics via a thick-target method. The excitation function for the ^13N(p,p) scattering was obtained in the energy interval of Ecru ≈0.5-3.2 MeV with a ^13 N secondary beam of (47.8±1.5) MeV. Careful analysis of the secondary beam components and extensive Monte-Carlo simulations enable the resolution of the experimental proton spectra. The resonance parameters for five low-lying levels in ^14 O were deduced by Rmatrix fitting calculations with MULTI7 and SAMMY-M6-BETA. The present results show general agreement with those from a recent similar work, and thus confirm the observation of a new 0^- level at 5.7 MeV in 140 with an improved width of 400(45) keV.  相似文献   

19.
An Al0.2Ga0.8N/AlN/Al0.2Ga0.8N heterostructure was grown by metalorganic chemical vapor deposition on a sapphire (0001) substrate with a thick (〉 1 μm) GaN intermediate layer. The Al composition was determined by Rutherford backscattering (RBS). Using the channeling scan around an off-normal [1213] axis in the (1010) plane of the Al0.2Ga0.8N layer, the tetragonal distortion eT, which is caused by the elastic strain in the epilayer, is investigated. The results show that eT in the high-quality Al0.2Ga0.8N layer is dramatically released by the AIN interlayer from 0.66% to 0.27%.  相似文献   

20.
董宇兵 《中国物理 C》2010,34(9):1346-1349
The effect of the two-photon exchange on the deuteron electromagnetic form factors is estimated based on an effective Lagrangian approach. A numerical estimate calculation of the effect is discussed. In particular, the effect on the polarization observables is analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号