首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ternary iron arsenide BaFe2As2 becomes superconducting by hole doping, which was achieved by partial substitution of the barium site with potassium. We have discovered bulk superconductivity at T{c}=38 K in (Ba1-xKx)Fe2As2 with x approximately 0.4. The parent compound BaFe2As2 crystallizes in the tetragonal ThCr2Si2-type structure, which consists of (FeAs);{delta-} iron arsenide layers separated by Ba2+ ions. BaFe2As2 is a poor metal and exhibits a spin density wave anomaly at 140 K. By substituting Ba2+ for K+ ions we have introduced holes in the (FeAs);{-} layers, which suppress the anomaly and induce superconductivity. The T{c} of 38 K in (Ba0.6K0.4)Fe2As2 is the highest in hole doped iron arsenide superconductors so far. Therefore, we were able to expand this class of superconductors by oxygen-free compounds with the ThCr2Si2-type structure.  相似文献   

2.
The evolution of (75)As NMR parameters with composition and temperature was probed in the Ba(Fe(1-x)Ru(x))(2)As(2) system where Fe is replaced by isovalent Ru. While the Ru end member was found to be a conventional Fermi liquid, the composition (x = 0.5) corresponding to the highest T(c) (20 K) in this system shows an upturn in the (75)As [Formula: see text] below about 80 K, evidencing the presence of antiferromagnetic (AFM) fluctuations. These results are similar to those obtained in another system with isovalent substitution, BaFe(2)(As(1-x)P(x))(2) (Nakai et al 2010 Phys. Rev. Lett. 105 107003) and point to a possible role of AFM fluctuations in driving superconductivity.  相似文献   

3.
Our recent scanning tunneling microscopy (STM) studies of the NaFe1-xCoxAs phase diagram over a wide range of dopings and temperatures are reviewed. Similar to the high-T c cuprates, the iron-based superconductors lie in close proximity to a magnetically ordered phase. Therefore, it is widely believed that magnetic interactions or fluctuations play an important role in triggering their Cooper pairings. Among the key issues regarding the electronic phase diagram are the properties of the parent spin density wave (SDW) phase and the superconducting (SC) phase, as well as the interplay between them. The NaFe1-xCoxAs is an ideal system for resolving these issues due to its rich electronic phases and the charge-neutral cleaved surface. In our recent work, we directly observed the SDW gap in the parent state, and it exhibits unconventional features that are incompatible with the simple Fermi surface nesting picture. The optimally doped sample has a single SC gap, but in the underdoped regime we directly viewed the microscopic coexistence of the SDW and SC orders, which compete with each other. In the overdoped regime we observed a novel pseudogap-like feature that coexists with superconductivity in the ground state, persists well into the normal state, and shows great spatial variations. The rich electronic structures across the phase diagram of NaFe1-xCoxAs revealed here shed important new light for defining microscopic models of the iron-based superconductors. In particular, we argue that both the itinerant electrons and local moments should be considered on an equal footing in a realistic model.  相似文献   

4.
Ba(1-x)K(x)Fe(2)As(2) superconducting samples (x = 0, 0.2, 0.4, 0.5) were synthesized by the solid-state reaction method. In this contribution the doping effect of potassium on the lattice dynamics in this newly discovered Ba(1-x)K(x)Fe(2)As(2) superconductor has been investigated by extended X-ray absorption fine-structure spectroscopy. The analysis shows that with potassium doping an increased disorder in the iron layers is mainly related to the softening of the Fe-Fe bond. Information about the electronic structure of these materials has also been obtained by looking at the X-ray absorption near-edge structure spectra that point out the presence of holes in the Fe-3d/As-4p hybridized orbital of the BaFe(2)As(2)-based system.  相似文献   

5.
Low energy electron diffraction (LEED) experiments, LEED simulations, and finite slab density functional calculations are combined to study the cleavage surface of Co doped BaFe(2-x)Co(x)As2 (x = 0.1,0.17). We demonstrate that the energy dependence of the LEED data can only be understood from a terminating 1/2 Ba layer accompanied by distortions of the underlying As-Fe2-As block. As a result, surface-related Fe 3d states are present in the electronic structure, which we identify in angle resolved photoemission spectroscopy (ARPES) experiments. The close proximity of the surface-related states to the bulk bands inevitably leads to broadening of the ARPES signals, which excludes the use of the BaFe(2-x)Co(x)As2 system for accurate determination of self-energies using ARPES.  相似文献   

6.
We report the antimony(Sb) doping effect in a prototype system of iron-based superconductors LaFeAsO1-yFy(y=0,0.1,0.15).X-ray powder diffraction indicates that the lattice parameters increase with Sb content within the doping limit.Rietveld structural refinements show that,with the partial substitution of Sb for As,the thickness of the Fe2As2 layers increases significantly,whereas that of the La2O2 layers shrinks simultaneously.So a negative chemical pressure is indeed "applied" to the superconducting-active Fe2As2 layers,in contrast to the effect of positive chemical pressure by the phosphorus doping.Electrical resistance and magnetic susceptibility measurements indicate that,while the Sb doping hardly influences the SDW anomaly in LaFeAsO,it recovers SDW order for the optimally-doped sample of y=0.1.In the meantime,the superconducting transition temperature can be raised up to 30 K in LaFeAs1-xSbxO1-yFy with x=0.1 and y=0.15.The Sb doping effects are discussed in term of both J1-J2 model and Fermi Surface(FS) nesting scenario.  相似文献   

7.
We report scanning tunneling microscopy/spectroscopy(STM/STS) studies on iron-based superconductors of Ba1-xKx Fe2As2 and nearly optimally doped Fe(Te,Se). Mode-like features were observed universally outside the superconducting gaps in the tunneling spectra, which are similar to our previous observations in other samples and can be ascribed to the interaction between electrons and spin excitations. Furthermore, an almost linear relationship between the superconducting gaps and the superconducting transition temperatures was noted and should also be taken into account in understanding the mechanism of iron-based superconductors.  相似文献   

8.
在广义梯度近似(GGA)和GGA+U的框架下,用第一性原理方法研究了用FeAs单层的简单模型来研究LaFeAsO和BaFe2As2的合理性. 对未掺杂的FeAs单层,优化的几何结构及其对应的电子结构与本体的性质差异较大,并且在单层中没有发现体相中的共线反铁磁基态. 另外,在单层中,As与Fe层之间在z方向的间距随电子和空穴掺杂浓度的变化也与实验结果不符,这些结果表明,在LaFeAsO和BaFe2As2中,FeAs层与其他层之间的相互作用是不可忽略的,用简单的FeAs单层来处理Fe基超导体需要考虑更多的修正  相似文献   

9.
The Fe K x-ray absorption near edge structure of BaFe(2-x)Co(x)As(2) superconductors was investigated. No appreciable alteration in shape or energy position of this edge was observed with Co substitution. This result provides experimental support to previous ab initio calculations in which the extra Co electron is concentrated at the substitute site and do not change the electronic occupation of the Fe ions. Superconductivity may emerge due to bonding modifications induced by the substitute atom that weakens the spin-density-wave ground state by reducing the Fe local moments and/or increasing the elastic energy penalty of the accompanying orthorhombic distortion.  相似文献   

10.
We systematically investigated the in-plane resistivity anisotropy of electron-underdoped EuFe(2-x)Co(x)As(2) and BaFe(2-x)Co(x)As(2) and hole-underdoped Ba(1-x)K(x)Fe(2)As(2). Large in-plane resistivity anisotropy was found in the former samples, while tiny in-plane resistivity anisotropy was detected in the latter ones. When it is detected, the anisotropy starts above the structural transition temperature and increases smoothly through it. As the temperature is lowered further, the anisotropy takes a dramatic enhancement through the magnetic transition temperature. We found that the anisotropy is universally tied to the presence of T-linear behavior of resistivity. Our results demonstrate that the nematic state is caused by electronic degrees of freedom, and the microscopic orbital involvement in the magnetically ordered state must be fundamentally different between the hole- and electron-doped materials.  相似文献   

11.
We perform first-principle phonon calculations for three typical iron-based superconductors, i.e., LaFeAsO,BaFe2As2, and FeSe. Though those crystals have different structures, we find that the optical modes associated with Fe vibration have almost similar characters. Moreover, we examine the pressure effect on phonons in FeSe. By increasing the external pressure, the phonon mode frequency related to Fe vibration effectively rises up and the electronic density of states at Fermi level also increases. These results may correlate to the critical temperature enhancement under high pressure.  相似文献   

12.
Having succeeded in the fabrication of epitaxial superconducting LaFeAsO(1-x)F(x) thin films we performed an extensive study of electrical transport properties. In the face of multiband superconductivity we can demonstrate that an anisotropic Ginzburg-Landau scaling of the angular dependent critical current densities can be adopted, although being originally developed for single band superconductors. In contrast with single band superconductors the mass anisotropy of LaFeAsO(1-x)F(x) is temperature dependent. A very steep increase of the upper critical field and the irreversibility field can be observed at temperatures below 6 K, indicating that the band with the smaller gap is in the dirty limit. This temperature dependence can be theoretically described by two dominating bands responsible for superconductivity. A pinning force scaling provides insight into the prevalent pinning mechanism and can be specified in terms of the Kramer model.  相似文献   

13.
Charge doping of iron-pnictide superconductors leads to collective pinning of flux vortices, whereas isovalent doping does not. Moreover, flux pinning in the charge-doped compounds is consistently described by the mean-free path fluctuations introduced by the dopant atoms, allowing for the extraction of the elastic quasiparticle scattering rate. The absence of scattering by dopant atoms in isovalently doped BaFe2(As(1-x)P(x))(2) is consistent with the observation of a linear temperature dependence of the low-temperature penetration depth in this material.  相似文献   

14.
Striped high-T(c) superconductors such as La(2-y-x)Nd(y)Sr(x)CuO(4) and La(2-x)Ba(x)CuO(4) near x = 1/8 show a fascinating competition between spin and charge order and superconductivity. A theory for these systems therefore has to capture both the spin correlations of an antiferromagnet and the pair correlations of a superconductor. For this purpose we present here an effective Hartree-Fock theory incorporating both electron pairing with finite center-of-mass momentum and antiferromagnetism. We show that this theory reproduces the key experimental features such as the formation of the antiferromagnetic stripe patterns at 7/8 band filling or the quasi-one-dimensional electronic structure observed by photoemission spectroscopy.  相似文献   

15.
From all-electron fixed-spin-moment calculations we show that ferromagnetic and checkerboard antiferromagnetic ordering in LaFeAsO are not stable and the stripe antiferromagnetic configuration with M(Fe)=0.48 microB is the only stable ground state. The main exchange interactions between Fe ions are large, antiferromagnetic, and frustrated. The magnetic stripe phase breaks the tetragonal symmetry, removes the frustration, and causes a structural distortion. These results successfully explain the magnetic and structural phase transitions in LaFeAsO recently observed by neutron scattering. The presence of competing strong antiferromagnetic exchange interactions suggests that magnetism and superconductivity in doped LaFeAsO may be strongly coupled, much like in the high-T(c) cuprates.  相似文献   

16.
代霞  勒聪聪  吴贤新  胡江平 《中国物理 B》2016,25(7):77402-077402
We propose two possible new compounds, Ba_2CuO_2Fe_2As_2and K_2CuO_2Fe_2Se_2, which hybridize the building blocks of two high temperature superconductors, cuprates and iron-based superconductors. These compounds consist of square CuO_2 layers and antifluorite-type Fe_2X_2(X = As, Se) layers separated by Ba/K. The calculations of binding energies and phonon spectra indicate that they are dynamically stable, which ensures that they may be experimentally synthesized. The Fermi surfaces and electronic structures of the two compounds inherit the characteristics of both cuprates and iron-based superconductors. These compounds can be superconductors with intriguing physical properties to help to determine the pairing mechanisms of high Tc superconductivity.  相似文献   

17.
Neutron diffraction studies of Ba(Fe(1-x)Co(x))(2)As)(2) reveal that commensurate antiferromagnetic order gives way to incommensurate magnetic order for Co compositions between 0.056 < x < 0.06. The incommensurability has the form of a small transverse splitting (0, ± ε, 0) from the commensurate antiferromagnetic propagation vector Q(AFM) = (1,0,1) (in orthorhombic notation) where ε ≈ 0.02-0.03 and is composition dependent. The results are consistent with the formation of a spin-density wave driven by Fermi surface nesting of electron and hole pockets and confirm the itinerant nature of magnetism in the iron arsenide superconductors.  相似文献   

18.
The compound BaMn2As2 with the tetragonal ThCr2Si2 structure is a local-moment antiferromagnetic insulator with a Néel temperature T(N)=625 K and a large ordered moment μ=3.9μ(B)/Mn. We demonstrate that this compound can be driven metallic by partial substitution of Ba by K while retaining the same crystal and antiferromagnetic structures together with nearly the same high T(N) and large μ. Ba(1-x)K(x)Mn2As2 is thus the first metallic ThCr2Si2-type MAs-based system containing local 3d transition metal M magnetic moments, with consequences for the ongoing debate about the local-moment versus itinerant pictures of the FeAs-based superconductors and parent compounds. The Ba(1-x)K(x)Mn2As2 class of compounds also forms a bridge between the layered iron pnictides and cuprates and may be useful to test theories of high T(c) superconductivity.  相似文献   

19.
We use high resolution angle-resolved photoemission to study the electronic structure of the iron based high-temperature superconductors Ba(Fe(1-x)Ru(x))(2)As(2) as a function of Ru concentration. We find that substitution of Ru for Fe is isoelectronic, i.e., it does not change the value of the chemical potential. More interestingly, there are no measured, significant changes in the shape of the Fermi surface or in the Fermi velocity over a wide range of substitution levels (0相似文献   

20.
Current status of iron-based superconductors is summarized. Although short range magnetic ordering and magnetic phase separation of Fe are controversial, (long range) magnetic and electronic phase diagrams of iron based superconductors can be classified into two-type. Antiferromagnetic ordering of itinerant Fe does not coexist with superconducting phase of SmFeAsO1???xFx. The very large H c2 of iron-based superconductors attract us to attempts at applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号