首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate the influence of reagent vibration on the stereodynamics of the title reaction by the quasi-classical trajectory on the Aguado-Paniagua2-potential energy surface developed by Aguado et al.(J.Chem.Phys.1997 106 1013).The cross sections and reaction probability as functions of the reagent vibration are calculated in the centre-ofmass frame.The product angular distributions of p(θr),p(φr),and p(θr,φr),which reflect the vector correlation,are also presented and discussed.The results indicate that the vector properties are sensitively affected by the vibrational excitation.  相似文献   

2.
Employing the quasi-classical trajectory method and the potential energy surface of Panda and Sathyamurhy [Panda A N and Sathyamurthy N 2004 J.Chem.Phys.121 9343],the effect of the reagent vibration on vector correlation of the ion-molecule reactions D~-+H2 and H~-+D2 is studied at a collision energy of 35.7 kcal/mol.Four generalized polarization-dependent differential cross sections (2π/σ)(dσ 00 /dωt),(2π/σ)(dσ 20 /dωt),(2π/σ)(dσ 22+ /dωt),and (2π/σ)(dσ 21 /dωt) are presented in the centre-of-mass reference frame,separately.At the same time,the effects on the product angular distributions P (θr),P (φr) and P (θr,φr) of the title reactions are also analysed.The calculated results show that the scattering tendencies of the product HD,the alignment and the orientation of j sensitively depend on reagent molecule vibration.  相似文献   

3.
The stereodynamics of the reaction of Ca + HCl are calculated at three different collision energies based on the potential energy surface [Verbockhaven G et al. 2005 J. Chem. Phys. 122 204307] using quasi-classical trajectory theory. The polarization-dependent differential cross sections (PDDCSs) (2π/σ )(dσ 00 /dω t ), (2π/σ )(dσ 20 /dωt ), (2π/σ )(dσ 22+ /dωt ), (2π/σ )(dσ 21 /dω t ) and the distributions of P(θ r ), P(φr ), and P(θr ,φr ) are calculated. The results indicate that the rotational polarization of the CaCl product presents different characteristics for the different collision energies, and the effects of the collision energy on the vector potential, including the alignment, orientation, and PDDCSs, are not obvious.  相似文献   

4.
Quasi-classical trajectory(QCT) studies on the stereodynamics of H + Br O → O + HBr reaction have been performed on the X1A′state of ab initio potential energy surface by Peterson [Peterson K A 2000 J. Chem. Phys. 113 4598] in a collision energy range from 0 kcal/mol to 6 kcal/mol. Two of the polarization-dependent generalized differential cross sections(PDDCSs),(2π /σ)( dσ00/ dωt)(PDDCS00) and(2π /σ)( dσ20/ dωt)(PDDCS20) are considered. The rotational polarizations of these products show sensitive behaviors to the calculated collision energy range. Furthermore, in order to gain more knowledge about vector correlations, the product angular distribution, P(θr), and the dihedral angle, P(φr),are calculated, and the results indicate that both the rotational alignment and orientation of the product are enhanced as collision energy increases.  相似文献   

5.
<正>The quasi-classical trajectory(QCT) method is used to study the H+HS reaction on a newly built potential energy surface(PES) of the triplet state of H2S(3A″) in a collision energy range of 0-60 kcal/mol.Both scalar properties, such as the reaction probability and the integral cross section(ICS),and the vector properties,such as the angular distribution between the relative velocity vector of the reactant and that of the product,etc.,are investigated using the QCT method.It is found that the ICSs obtained by the QCT method and the quantum mechanical(QM) method accord well with each other.In addition,the distribution for the product vibrational states is cold,while that for the product rotational states is hot for both reaction channels in the whole energy range studied here.  相似文献   

6.
许燕  赵娟  岳大光  刘浩  郑晓云  孟庆田 《中国物理 B》2009,18(12):5308-5312
This paper studies the influence of the reagent vibration on the reaction O(1D)+HF → HO+F by using a quasi-classical trajectory method on the new \textitab initio 1A' ground singlet potential energy surface (Gómez-Carrasco et al 2007 Chem. Phys. Lett. 435 188--193). The product angular distributions which reflect the vector correlation are calculated. Four polarization-dependent differential cross sections (PDDCSs) which are sensitive to many photoinitiated bimolecular reaction experiments are presented in the center of the mass frame, respectively. The differential cross section indicates that the OH product mainly tends to the forward scattering, and other PDDCSs are also influenced by the vibration levels of HF.  相似文献   

7.
The quasi-classical trajectory(QCT) is calculated to study the stereodynamics properties of the title reaction H(2S)+NH(X3∑-) →N(4S)+H2 on the ground state 4A' potential energy surface(PES) constructed by Zhai and Han [2011 J.Chem.Phys.135 104314].The calculated QCT reaction probabilities and cross sections are in good agreement with the previous theoretical results.The effects of the collision energy on the k-k' distribution and the product polarization of H2 are studied in detail.It is found that the scattering direction of the product is strongly dependent on the collision energy.With the increase in the collision energy,the scattering directions of the products change from backward scattering to forward scattering.The distribution of P(θr) is strongly dependent on the collision energy below the lower collision energy(about 11.53 kcal/mol).In addition,the P(φr) distribution dramatically changes as the collision energy increases.The calculated QCT results indicate that the collision energy plays an important role in determining the stereodynamics of the title reaction.  相似文献   

8.
This paper investigates the stereodynamics of the reaction He+HD+ by the quasi-classical trajectory(QCT) method using the most accurate AQUILANTI surface [Aquilanti et al 2000 Mol.Phys.98 1835].The distribution P(φr) of dihedral angle and the distribution P(θr) of angle between k and j have been presented at three different collision energies.Four generalized polarization-dependent differential cross-sections(2π/σ)(dσ00/dωt),(2π/σ)(dσ20/dωt),(2π/σ)(dσ22+/dωt),(2π/σ)(dσ21 /dωt) are also calculated.Some interesting results are obtained from the comparison of the stereodynamics of the title reaction at different collision energies.  相似文献   

9.
岳现房  程杰  李宏  张永强  Emilia L. Wu 《中国物理 B》2010,19(4):43401-043401
The product polarizations of the title reactions are investigated by employing the quasi-classical trajectory (QCT) method. The four generalized polarization-dependent differential cross-sections (PDDCSs) $({2\pi } / \sigma )(\d\sigma _{00} / \d\omega _t )$, $({2\pi } / \sigma )(\d\sigma _{20} / \d\omega _t )$, $({2\pi } / \sigma )(\d\sigma _{22 + } / \d\omega _t )$, and $({2\pi } / \sigma )(\d\sigma _{21 - } / \d\omega _t )$ are calculated in the centre-of-mass frame. The distribution of the angle between ${{\bm k}}$ and ${{\bm j^\prime }}$, $P(\theta _r )$, the distribution of the dihedral angle denoting ${{\bm k}}${--}$\bm k^\prime $--$\bm j^\prime $ correlation, $P(\phi _r )$, as well as the angular distribution of product rotational vectors in the form of polar plots $P(\theta _r ,\phi _r )$ are calculated. The isotope effect is also revealed and primarily attributed to the difference in mass factor between the two title reactions.  相似文献   

10.
Quasi-classical trajectory theory is used to study the reaction of O(3 P) with H 2 (D 2) based on the ground 3 A″ potential energy surface (PES).The reaction cross section of the reaction O+H 2 →OH+H is in excellent agreement with the previous result.Vector correlations,product rotational alignment parameters P 2 (j · k) and several polarizeddependent differential cross sections are further calculated for the reaction.The product polarization distribution exhibits different characteristics that can be ascribed to different motion paths on the PES,arising from various collision energies or mass factors.  相似文献   

11.
<正>The quasi-classical trajectory(QCT) method is used to calculate the stereo-dynamics of the exchange reaction H_a+LiH_b→LiH_a+H_b and its isotopic variants based on an accurate potential energy surface reported by Prudente et al.[Prudente F V,Marques J M C and Maniero A M 2009 Chem.Phys.Lett.474 18].The reactive probability of the title reaction is computed.The vector correlations and four polarization-dependent generalized differential cross sections(PDDCSs) at different collision energies are presented.The influences of the collision energy and the reagent rotation on the product polarization are studied in the present work.The results indicate that the product rotational angular momentum j’ is not only aligned,but also oriented along the direction perpendicular to the scattering plane. The product polarization distributions of the title reaction and its isotopic variants exhibit distinct differences which may arise from different mass combinations.  相似文献   

12.
岳现房 《中国物理 B》2012,21(7):73401-073401
Stereodynamics for the reaction H+LiF(v=0, j=0) → HF+Li and its isotopic variants on the ground-state (1 2 A′) potential energy surface (PES) are studied by employing the quasi-classical trajectory (QCT) method. At a collision energy of 1.0 eV, product rotational angular momentum distributions P (θr), P (φr), and P (θr ,φr), are calculated in the center-of-mass (CM) frame. The results demonstrate that the product rotational angular momentum j′ is not only aligned along the direction perpendicular to the reagent relative velocity vector k, but also oriented along the negative y axis. The four generalized polarization-dependent differential cross sections (PDDCSs) are also computed. The PDDCS 00 distribution shows a preferential forward scattering for the product angular distribution in each of the three isotopic reactions, which indicates that the title collision reaction is a direct reaction mechanism. The isotope effect on the stereodynamics is revealed and discussed in detail.  相似文献   

13.
Quasi-classical trajectory (QCT) calculations have been performed to study the product polarization behaviours in the reaction O(3P) + D2 (v = 0, j = 0) → OD + D. By running trajectories on the 3A and 3A potential energy surfaces (PESs), vector correlations such as the distributions of the polarization-dependent differential cross sections (PDDCSs), the angular distributions of P (θr) and P (φr) are presented. Isotope effect is discussed in this work by a comprehensive comparison with the reaction O(3P) + H2 (v = 0, j = 0) → H + H. Common characteristics as well as differences are discussed in product alignment and orientation for the two reactions. The isotope mass effect differs on the two potential energy surfaces: the isotope mass effect has stronger influence on P (θr) and PDDCSs of the 3A PES while the opposite on P (φr) of the 3A potential energy surface.  相似文献   

14.
葛美华  郑雨军 《中国物理 B》2011,20(8):83401-083401
We have carried out a quasi-classical trajectory calculation for the reaction of Ne + H2+ (v=0, j=1) → NeH+ + H on the ground state (12A') using the LZHH potential energy surface constructed by Lü et al. [Lü S J, Zhang P Y, Han K L and He G Z 2010 J. Chem. Phys. 132 014303]. Differential cross sections at many collision energies indicate that the reaction is dominated by forward-scattering. In addition, the NeH+ product shows rotationally hot and vibrationally cold distributions. Stereodynamical results indicate that the products are strongly polarized in the direction perpendicular to the scattering plane and that the products rotate mainly in planes parallel to the scattering plane.  相似文献   

15.
魏强 《中国物理 B》2014,23(2):23401-023401
The stereodynamics and reaction mechanism of the H′(^2S) + NH (X^3∑^-) → N(^4S) + H2 reaction are thoroughly studied at collision energies in the 0.1 eV-1.0 eV range using the quasiclassical trajectory (QCT) on the ground 4A″ potential energy surface (PES). The distributions of vector correlations between products and reagents P(φr), P(φr) and P(φr,φr) are presented and discussed. The results indicate that product rotational angular momentum j′ is not only aligned, but also oriented along the direction perpendicular to the scattering plane; further, the product H2 presents different rotational polarization behaviors for different collision energies. Furthermore, four polarization-dependent differential cross sections (PDDCSs) of the product He are also calculated at different collision energies. The reaction mechanism is analyzed based on the stereodynamics properties. It is found that the abstraction mechanism is appropriate for the title reaction.  相似文献   

16.
A quasi-classical trajectory(QCT) calculation is used to investigate the vector and scalar properties of the D + Br O → DBr + O reaction based on an ab initio potential energy surface(X1A state) with collision energy ranging from 0.1 kcal/mol to 6 kcal/mol. The reaction probability, the cross section, and the rate constant are studied. The probability and the cross section show decreasing behaviors as the collision energy increases. The distribution of the rate constant indicates that the reaction favorably occurs in a relatively low-temperature region(T 100 K). Meanwhile, three product angular distributions P(θr), P(φr), and P(θr, φr) are presented, which reflect the positive effect on the rotational angular momentum j' polarization of the DBr product molecule. In addition, two of the polarization-dependent generalized differential cross sections(PDDCSs), PDDCS00 and PDDCS20, are computed as well. Our results demonstrate that both vector and scalar properties have strong energy dependence.  相似文献   

17.
The stereodynamic properties of the reaction C(3P)+NO(X2Π)→CN(X2Σ+)+O(3P) in different rotational states of reactant NO are studied theoretically by using the quasiclassical trajectory method on 2A' and 2A' potential energy surfaces(PESs) at a collision energy of 0.06 eV.The vector properties in different rotational states on the two surfaces are discussed in detail.The results indicate that the rotational excitation of NO has considerable influence on the stereodynamic property of the reaction occurring on the two surfaces.At the same time,the calculated polarization-dependent differential cross sections(PDDCSs) in different initial rotational states manifest that products are strongly polarized at three scattering angles.  相似文献   

18.
To investigate the effect of a reagent’s rotational and vibrational excitations on the stereo-dynamics of the reaction product, the title reaction is theoretically simulated using the quasi-classical trajectory (QCT) method on the 3 A and 3 A potential energy surfaces (PESs). The reaction cross section is considered as the only scalar property in this work at four different collision energies. Furthermore the vector properties including two polarization-dependent differential cross sections (PDDCSs), the angular distributions of product’ rotational momentum are discussed at one fixed collision energy. Effects of reagents’ rotational excitation on the reaction do exist regularly.  相似文献   

19.
In this work, the program Cindy was modified to calculate the formation cross section of each energy level of residual nucleus 181W resulting from the reaction 181Ta(p,nγ)181W. The concerned cross sections calculated at proton energy Ep=4.5-8.5 MeV agreed well with experimental results. The influence of the spin cut-off parameter in the energy level density model on the cross section was studied. The obtained results show that the influence of spin cut-off is obvious for lower energy levels.  相似文献   

20.
<正>The quasi-classical trajectory(QCT) method based on the extended London-Eyring-Polanyi-Sato potential energy surface is used to investigate the product vibrational distribution,angular distribution and angle-resolved kinetic distribution of the reaction Ba+C3H7Br→BaBr+C3H7 at 2.58 kcal/mol.The calculated results show that the product BaBr vibrational distribution is quite hot,the vibrational population peaks are located at v = 12,and the angular product distribution tends to backward scattering.The calculated angle-resolved kinetic distribution shows that the kinetic distribution is obviously related to angle.The QCT results are always qualitatively acceptable and sometimes even quantitatively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号