首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of Mg-induced net acceptor doping concentration and carrier lifetime on the performance of a p-i-n InGaN solar cell are investigated. It is found that the electric field induced by spontaneous and piezoelectric polariza- tion in the i-region could be totally shielded when the Mg-induced net acceptor doping concentration is sufficiently high. The polarization-induced potential barriers are reduced and the short circuit current density is remarkably increased from 0.21 mA/cm2 to 0.95 mA/cm2 by elevating the Mg doping concentration. The carrier lifetime determined by defect density of i-InGaN also plays an important role in determining the photovoltaic properties of solar cell. The short circuit current density severely degrades, and the performance of InGaN solar cell becomes more sensitive to the polarization when carrier lifetime is lower than the transit time. This study demonstrates that the crystal quality of InGaN absorption layer is one of the most important challenges in realizing high efficiency InGaN solar cells.  相似文献   

2.
周梅  赵德刚 《物理学报》2012,61(16):168402-168402
研究了器件结构参数对p-i-n结构InGaN单结太阳能电池性能的影响及物理机制. 模拟结果发现: 随着InGaN禁带宽度的增加, InGaN电池的短路电流减小, 但同时开路电压增加, 当InGaN层的禁带宽度为1.5 eV左右时, 同质p-i-n结InGaN电池的效率最高, 并计算了不同厚度的i层对InGaN电池效率的影响. 进一步的计算表明, 适当采用带宽更大的p-InGaN层形成异质p-i-n结InGaN电池可以获得更高效率, 但是p-InGaN层带宽过大也会导致电池的效率急剧下降. 研究还发现, 采用禁带宽度更大的n-InGaN层可以形成背电场, 从而增加p-i-n结InGaN太阳电池的效率. 研究结果表明, 适当选择p-InGaN和n-InGaN禁带宽度形成异质p-i-n结可以提高InGaN太阳能电池效率.  相似文献   

3.
利用金属有机物化学气相淀积技术在蓝宝石衬底上生长了InGaN/GaN量子阱结构. 研究了引入n型InGaN薄层或InGaN/GaN超晶格层的量子阱特性,结果表明通过引入n型InGaN薄层或InGaN/GaN超晶格层缓解了量子阱有源区中的应力,改善了多量子阱表面形貌,减少了V型缺陷密度,而且提高了多量子阱的光致发光强度,从而也改进了LED的发光效率. 关键词: InGaN/GaN多量子阱 原子力显微镜 X射线双晶衍射 光致发光  相似文献   

4.
Effects of polarization and p-type GaN resistivity on the spectral response of InGaN/GaN multiple quantum well(MQW) solar cells are investigated. It is found that due to the reduction of piezoelectric polarization and the enhancement of tunneling transport of photo-generated carriers in MQWs, the external quantum efficiency(EQE) of the solar cells increases in a low energy spectral range(λ 370 nm) when the barrier thickness value decreases from 15 nm to 7.5 nm. But the EQE decreases abruptly when the barrier thickness value decreases down to 3.75 nm. The reasons for these experimental results are analyzed. We are aware that the reduction of depletion width in MQW region, caused by the high resistivity of the p-type GaN layer may be the main reason for the abnormally low EQE value at long wavelengths(λ 370 nm).  相似文献   

5.
In this paper,InGaN/GaN multiple quantum well solar cells (MQWSCs) with an In content of 0.15 are fabricated and studied.The short-circuit density,fill factor and open-circuit voltage (V oc) of the device are 0.7 mA/cm 2,0.40 and 2.22 V,respectively.The results exhibit a significant enhancement of V oc compared with those of InGaN-based hetero and homojunction cells.This enhancement indicates that the InGaN/GaN MQWSC offers an effective way for increasing V oc of an In-rich In x Ga 1 x N solar cell.The device exhibits an external quantum efficiency (EQE) of 36% (7%) at 388 nm (430 nm).The photovoltaic performance of the device can be improved by optimizing the structure of the InGaN/GaN multiple quantum well.  相似文献   

6.
The performance of a multiple quantum well (MQW) InGaN solar cell with double indium content is investigated. It is found that the adoption of a double indium structure can effectively broaden the spectral response of the external quantum efficiencies and optimize the overall performance of the solar cell. Under AM1.5G illumination, the short-circuit current density (Jsc) and conversion efficiency of the solar cell are enhanced by 65% and 13% compared with those of a normal single-indium-content MQW solar cell. These improvements are mainly attributed to the expansion of the absorption spectrum and better extraction efficiency of the photon-generated carriers induced by higher polarization.  相似文献   

7.
8.
周梅  赵德刚 《物理学报》2008,57(7):4570-4574
研究了p-GaN层厚度对GaN基pin结构紫外探测器性能的影响.模拟计算表明:较厚的p-GaN层会减小器件的量子效率,然而同时也会减小器件的暗电流,较薄的p-GaN层会增加器件的量子效率,但是同时也增加了器件的暗电流.进一步的分析表明,金属和p-GaN之间的结电场是出现这种现象的根本原因.在实际的器件设计中,应该根据实际需要选择p型层的厚度. 关键词: GaN 紫外探测器 量子效率 暗电流  相似文献   

9.
刘诗涛  全知觉  王立 《中国物理 B》2017,26(3):38104-038104
Carrier transport via the V-shaped pits(V-pits) in InGaN/GaN multiple-quantum-well(MQW) solar cells is numerically investigated. By simulations, it is found that the V-pits can act as effective escape paths for the photo-generated carriers. Due to the thin barrier thickness and low indium composition of the MQW on V-pit sidewall, the carriers entered the sidewall QWs can easily escape and contribute to the photocurrent. This forms a parallel escape route for the carries generated in the flat quantum wells. As the barrier thickness of the flat MQW increases, more carriers would transport via the V-pits. Furthermore, it is found that the V-pits may reduce the recombination losses of carriers due to their screening effect to the dislocations. These discoveries are not only helpful for understanding the carrier transport mechanism in the InGaN/GaN MQW, but also important in design of the structure of solar cells.  相似文献   

10.
We develop a heterojunction-based Schottky solar cell consisting of n-type GaN and PEDOT:PSS and also investigate the effect of annealing on the performance of the solar cell. The results show that the open circuit voltage (Voc) increases from 0.54 V to 0.56 V, 0.71 V and 0.82 eV while decreases to 0.69 eV after annealing at 100 ℃, 130 ℃, 160 ℃, and 200 ℃, respectively, which can be ascribed to the change of barrier height of PEDOT:PSS/GaN Schottky contact induced by variation of the work function of the PEDOT:PSS. Furthermore, the conductivity and surface roughness measurements of the PEDOT:PSS indicate that annealing can increase the grain size and improve the connectivity between PEDOT and PSS particles, and cause thermal degradation at the same time, which leads to the rise in short-circuit current density (ISC) up to 160 ℃ and the dropoff in ISC after annealing at 200 ℃.  相似文献   

11.
研究了p-lnGaN层厚度对p-i-n结构InGaN太阳电池性能的影响.模拟计算发现,随着p-InGaN层厚度的增加,InGaN太阳电池效率降低.较差的p-InGaN欧姆接触特性会破坏InGaN太阳电池性能.计算结果还表明,无论欧姆接触特性好坏,随着p-InGaN层厚度的增加,短路电流下降是导致InGaN电池效率降低的主要原因.选择较薄的p-InGaN层有利于提高p-i-n结构InGaN太阳电池的效率.  相似文献   

12.
冯倩  时鹏  李宇坤  杜锴  王强  冯庆  郝跃 《中国物理 B》2014,23(2):28802-028802
Hybrid solar cells based on poly(3-hexylthiophene)(P3HT)and Galium nitride(GaN)nanoparticle bulk heterojunction are fabricated and analyzed.The GaN nanocrystal is synthesized by means of a combination of sol–gel process with high temperature ammoniation using Ga(OC2H5)as a precursor.Their characteristics are determined by X-ray diffraction,X-ray photoelectron spectroscopy,and scanning electron microscopy.With the addition of GaN nanoparticle to P3HT,the device performance is greatly enhanced.  相似文献   

13.
李国龙  黄卓寅  李衍  甄红宇  沈伟东  刘旭 《物理学报》2011,60(7):77207-077207
本文基于Forouhi-Bloomer 模型得到了这种功能层的光学常数.根据菲涅耳系数矩阵法计算了这种器件内的光电场分布,并计算了不同厚度的聚合物功能层的光子吸收数.同时,通过Onsager-Braun理论,分析了在无外加电场下聚合物功能层厚度对激子分离概率的影响.理论分析和实验结果证明:在特定的薄膜制备工艺下,器件结构为ITO/PEDOT/ P3HT:PC60BM /LiF/Al时,聚合物功能层厚度在100 nm左右时,可以使器件的光子吸收数最大化,同时避免了激子分离概率的降低. 关键词: 光学常数 激子 聚合物太阳能电池  相似文献   

14.
InGaN/GaN multiple quantum well (MQW) solar cells with stepped-thickness quantum wells (SQW) are designed and grown by metal-organic chemical vapor deposition. The stepped-thickness quantum wells structure, in which the well thickness becomes smaller and smaller along the growth direction, reveals better crystalline quality and better spectral overlap with the solar spectrum. Consequently, the short-circuit current density (Jsc) and conversion efficiency of the solar cell are enhanced by 27.12% and 56.41% compared with the conventional structure under illumination of AM1.5G (100 mW/cm2). In addition, approaches to further promote the performance of InGaN/GaN multiple quantum well solar cells are discussed and presented.  相似文献   

15.
We present a finite element model to simulate a combined strained InxGa1−xN/GaN heterostructure and an edge misfit dislocation on the basal {0001} slip plane, taking the anisotropic elasticity into account. The introduction of a misfit dislocation partially relaxes the misfit strain. The model directly gives the residual strain, which is the exact strain field stored in the system after relaxation. The critical thickness is then determined based on an overall energy minimization approach including the dislocation core contribution. Compared with the results from other methods and available experimental data, our approach is appropriate for describing the critical thickness of the wurtzite InGaN/GaN material system.  相似文献   

16.
17.
In this paper we present a study of the effect of GaN capping layer thickness on the two-dimensional (2D)-electron mobility and the two-dimensional electron gas (2DEG) sheet density which is formed near the AlGaN barrier/buffer GaN layer. This study is undertaken using a fully numerical calculation for GaN/AlxGa1−xN/GaN heterostructures with different Al mole fraction in the AlxGa1−xN barrier, and for various values of barrier layer thickness. The results of our analysis clearly indicate that increasing the GaN capping layer thickness leads to a decrease in the 2DEG density. Furthermore, it is found that the room-temperature 2D-electron mobility reaches a maximum value of approximately 1.8×103 cm2 /Vs−1 for GaN capping layer thickness grater than 100 Å with an Al0.32Ga0.68N barrier layer of 200 Å thick. In contrast, for same structure, the 2DEG density decreases monotonically with GaN capping layer thickness, and eventually saturates at approximately 6×1012 cm−2 for capping layer thickness greater than 500 Å. A comparison between our calculated results with published experimental data is shown to be in good agreement for GaN capping layers up to 500 Å thickness.  相似文献   

18.
We report an MoO3/Ag/Al/ZnO intermediate layer connecting two identical bulk heterojunction subcells with a poly(3-hexylthiophene) and [6,6]-phenyl-C61-butyric acid methyl ester(P3HT and PCBM) active layer for inverted tandem polymer solar cells. The highly transparent intermediate layer with an optimized thickness realizes an Ohmic contact between the two subcells for effective charge extraction and recombination. A maximum power conversion efficiency of 3.76% is obtained for the tandem cell under 100 mW/cm2 illumination, which is larger than that of a single cell(3.15%).The open-circuit voltage of the tandem cell(1.18 V) approaches double that of the single cell(0.61 V).  相似文献   

19.
We report an MoO3/Ag/Al/ZnO intermediate layer connecting two identical bulk heterojunction subcells with a poly(3-hexylthiophene) and [6,6]-phenyl-C61-butyric acid methyl ester (P3HT and PCBM) active layer for inverted tan- dem polymer solar cells. The highly transparent intermediate layer with an optimized thickness realizes an Ohmic contact between the two subcells for effective charge extraction and recombination. A maximum power conversion efficiency of 3.76% is obtained for the tandem cell under 100 mW/cm2 illumination, which is larger than that of a single cell (3.15%). The open-circuit voltage of the tandem cell (1.18 V) approaches double that of the single cell (0.61 V).  相似文献   

20.
N, S-doped TiO2 anode effect on performance of dye-sensitized solar cells   总被引:1,自引:0,他引:1  
The modification of non-metallic elements N and S to nanocrystalline TiO2 anode results in the energy gap is reduced to 2.63 eV and a strong redshift to the visible region occurred in the UV–visible spectrum. Poly (3-decylthiophene) (P3DT) is synthesized. Ultraviolet–visible spectra (UV–vis) shows that the light absorption of P3DT (Poly (3-decylthiophene)) and N719 (RuL2(NCS)2:2TBA (L=2,2′-bipyridyl-4, 4′-dicarboxylic acid)) are complementary to cover the entire visible region. Solar cell based on N–S/TiO2 is co-sensitized by P3DT and N719. The photoelectric conversion efficiency of co-sensitized solar cell increases 56.8% comparing with the single dye-sensitized solar cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号