首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
InGaN based light-emitting diodes (LEDs) with different electron blocking layers have been numerically investigated using the APSYS simulation software. It is found that the structure with a p-AlInN electron blocking layer showes improved light output power, lower current leakage, and smaller efficiency droop. Based on numerical simulation and analysis, these improvements of the electrical and optical characteristics are mainly attributed to the efficient electron blocking in the InGaN/GaN multiple quantum wells (MQWs).  相似文献   

2.
3.
陈峻  范广涵  张运炎 《中国物理 B》2013,22(1):18504-018504
The optical and physical properties of InGaN light-emitting diode (LED) with a specific design of staggered AlGaN electron-blocking layer (EBL) are investigated numerically in detail. The electrostatic field distribution, energy band, carrier concentration, electroluminescence (EL) intensity, internal quantum efficiency (IQE), and the output power are simulated. The results reveal that this specific design has a remarkable improvement of optical performance compared with the design of conventional LED. The lower electron leakage current, higher hole injection efficiency, and consequently mitigated efficiency droop are achieved. The significant decrease of electrostatic field at the interface between the last barrier and the EBL of LED could be one of the main reasons for these improvements.  相似文献   

4.
The optical and physical properties of an InGaN light-emitting diode (LED) with a specific design of a staggered AlGaN electron-blocking layer (EBL) are investigated numerically in detail. The electrostatic field distribution, energy band, carrier concentration, electroluminescence (EL) intensity, internal quantum efficiency (IQE), and the output power are simulated. The results reveal that this specific design has a remarkable improvement in optical performance compared with the design of a conventional LED. The lower electron leakage current, higher hole injection efficiency, and consequently mitigated efficiency droop are achieved. The significant decrease of electrostatic field at the interface between the last barrier and the EBL of the LED could be one of the main reasons for these improvements.  相似文献   

5.
Blue InGaN light-emitting diodes (LEDs) with a conventional electron blocking layer (EBL), a common n-AlGaN hole blocking layer (HBL), and an n-AlGaN HBL with gradual Al composition are investigated numerically, which involves analyses of the carrier concentration in the active region, energy band diagram, electrostatic field, and internal quantum efficiency (IQE). The results indicate that LEDs with an n-AlGaN HBL with gradual Al composition exhibit better hole injection efficiency, lower electron leakage, and a smaller electrostatic field in the active region than LEDs with a conventional p-AlGaN EBL or a common n-AlGaN HBL. Meanwhile, the efficiency droop is alleviated when an n-AlGaN HBL with gradual Al composition is used.  相似文献   

6.
Blue InGaN light-emitting diodes (LEDs) with a conventional electron blocking layer (EBL), a common n-A1GaN hole blocking layer (HBL), and an n-A1GaN HBL with gradual A1 composition are investigated numerically, which involves analyses of the carrier concentration in the active region, energy band diagram, electrostatic field, and internal quantum efficiency (IQE). The results indicate that LEDs with an n-AIGaN HBL with gradual AI composition exhibit better hole injection efficiency, lower electron leakage, and a smaller electrostatic field in the active region than LEDs with a conven tional p-A1GaN EBL or a common n-A1GaN HBL. Meanwhile, the efficiency droop is alleviated when an n-A1GaN HBL with gradual A1 composition is used.  相似文献   

7.
InGaN/AIlnGaN superlattice (SL) is designed as the electron blocking layer (EBL) of an InGaN/GaN-based light- emitting diode (LED). The energy band structure, polarization field at the last-GaN-barrier/EBL interface, carrier concen- tration, radiative recombination rate, electron leakage, internal quantum efficiency (IQE), current-voltage (l-V) perfor- mance curve, light output-current (L-l) characteristic, and spontaneous emission spectrum are systematically numerically investigated using APSYS simulation software. It is found that the fabricated LED with InGaN/AIInGaN SL EBL exhibits higher light output power, low forward voltage, and low current leakage compared with those of its counterparts. Meanwhile, the efficiency droop can be effectively mitigated. These improvements are mainly attributed to the higher hole injection efficiency and better electron confinement when InGaN/AIlnGaN SL EBL is used.  相似文献   

8.
InGaN/AlInGaN superlattice(SL) is designed as the electron blocking layer(EBL) of an InGaN/GaN-based lightemitting diode(LED). The energy band structure, polarization field at the last-GaN-barrier/EBL interface, carrier concentration, radiative recombination rate, electron leakage, internal quantum efficiency(IQE), current–voltage(I–V) performance curve, light output–current(L–I) characteristic, and spontaneous emission spectrum are systematically numerically investigated using APSYS simulation software. It is found that the fabricated LED with InGaN/AlInGaN SL EBL exhibits higher light output power, low forward voltage, and low current leakage compared with those of its counterparts.Meanwhile, the efficiency droop can be effectively mitigated. These improvements are mainly attributed to the higher hole injection efficiency and better electron confinement when InGaN/AlInGaN SL EBL is used.  相似文献   

9.
<正>In this study,the characteristics of nitride-based light-emitting diodes with different last barrier structures are analysed numerically.The energy band diagrams,electrostatic field near the last quantum barrier,carrier concentration in the quantum well,internal quantum efficiency,and light output power are systematically investigated.The simulation results show that the efficiency droop is markedly improved and the output power is greatly enhanced when the conventional GaN last barrier is replaced by an AlGaN barrier with Al composition graded linearly from 0 to 15% in the growth direction.These improvements are attributed to enhanced efficiencies of electron confinement and hole injection caused by the lower polarization effect at the last-barrier/electron blocking layer interface when the graded Al composition last barrier is used.  相似文献   

10.
In this study the performance of organic light-emitting diodes(OLEDs) are enhanced significantly,which is based on dual electron transporting layers(Bphen/CuPc).By adjusting the thicknesses of Bphen and CuPc,the maximal luminescence,the maximal current efficiency,and the maximal power efficiency of the device reach 17570 cd/m2 at 11 V,and 5.39 cd/A and 3.39 lm/W at 3.37 mA/cm2 respectively,which are enhanced approximately by 33.4%,39.3%,and 68.9%,respectively,compared with those of the device using Bphen only for an electron transporting layer.These results may provide some valuable references for improving the electron injection and the transportation of OLED.  相似文献   

11.
The AlGaN-based deep ultraviolet light-emitting diodes(LED) with double electron blocking layers(d-EBLs) on both sides of the active region are investigated theoretically. They possess many excellent performances compared with the conventional structure with only a single electron blocking layer, such as a higher recombination rate, improved light output power and internal quantum efficiency(IQE). The reasons can be concluded as follows. On the one hand, the weakened electrostatic field within the quantum wells(QWs) enhances the electron–hole spatial overlap in QWs, and therefore increases the probability of radioactive recombination. On the other hand, the added n-AlGaN layer can not only prevent holes from overflowing into the n-side region but also act as another electron source, providing more electrons.  相似文献   

12.
The efficiency enhancement of an InGaN light-emitting diode(LED) with an AlGaN/InGaN superlattice(SL)electron-blocking layer(EBL) is studied numerically,which involves the light-current performance curve,internal quantum efficiency electrostatic field band wavefunction,energy band diagram carrier concentration,electron current density,and radiative recombination rate.The simulation results indicate that the LED with an AlGaN/InGaN SL EBL has better optical performance than the LED with a conventional rectangular AlGaN EBL or a normal AlGaN/GaN SL EBL because of the appropriately modified energy band diagram,which is favorable for the injection of holes and confinement of electrons.Additionally,the efficiency droop of the LED with an AlGaN/InGaN SL EBL is markedly improved by reducing the polarization field in the active region.  相似文献   

13.
The efficiency enhancement of an InGaN light-emitting diode (LED) with an A1GaN/InGaN superlattice (SL) electron-blocking layer (EBL) is studied numerically, which involves the light-current performance curve, internal quan- tum efficiency electrostatic field band wavefunction, energy band diagram carrier concentration, electron current density, and radiative recombination rate. The simulation results indicate that the LED with an A1GaN/InGaN SL EBL has better optical performance than the LED with a conventional rectangular A1GaN EBL or a normal A1GaN/GaN SL EBL because of the appropriately modified energy band diagram, which is favorable ibr the injection of holes and confinement of elec- trons. Additionally, the efficiency droop of the LED with an AIGaN/InGaN SL EBL is markedly improved by reducing the polarization field in the active region.  相似文献   

14.
InGaN-based light-emitting diodes with p-GaN and p-AlGaN hole injection layers are numerically studied using the APSYS simulation software.The simulation results indicate that light-emitting diodes with p-AlGaN hole injection layers show superior optical and electrical performance,such as an increase in light output power,a reduction in current leakage and alleviation of efficiency droop.These improvements can be attributed to the p-AlGaN serving as hole injection layers,which can alleviate the band bending induced by the polarization field,thereby improving both the hole injection efficiency and the electron blocking efficiency.  相似文献   

15.
本文提出了用双阶渐变阶梯和倒双阶渐变阶梯形电子阻挡层(EBL)以减少AlGaN基深紫外激光二极管(DUV-LDs)在p型区的电子泄露,并用Crosslight软件模拟仿真了双阶渐变阶梯和倒双阶渐变阶梯形EBL结构的光电特性,结果发现:具有倒双阶渐变阶梯形EBL的激光器拥有比双阶渐变阶梯形EBL激光器更高的斜率效率(SE),更高的输出功率,更低的阈值电流和阈值电压,更高的有效势垒高度和更低的电子泄露.这意味着前者拥有更强的抑制电子泄露的能力.在与矩形EBL结构对比中发现,所提出的结构还提高了有源区载流子浓度和辐射复合速率,进一步提高了DUV-LDs的光电性能.  相似文献   

16.
InGaN based light-emitting diodes (LEDs) with dip-shaped quantum wells and conventional rectangular quantum wells are numerically investigated by using the APSYS simulation software. It is found that the structure with dip-shaped quantum wells shows improved light output power, lower current leakage and less efficiency droop. Based on numerical simulation and analysis, these improvements on the electrical and the optical characteristics are attributed mainly to the alleviation of the electrostatic field in dip-shaped InGaN/GaN multiple quantum wells (MQWs).  相似文献   

17.
P-AlGaN/P-GaN superlattices are investigated in blue InGaN light-emitting diodes as electron blocking layers.The simulation results show that efficiency droop is markedly improved due to two reasons:(i) enhanced hole concentration and hole carrier transport efficiency in AlGaN/GaN superlattices,and(ii) enhanced blocking of electron overflow between multiple quantum-wells and AlGaN/GaN superlattices.  相似文献   

18.
High efficiency blue phosphorescent organic light-emitting diodes were fabricated without an electron transport layer using a spirobifluorene based blue triplet host material. The simple blue PHOLEDs without the electron transport layer showed a high external quantum efficiency and current efficiency of 16.1% and 30.2 cd/A, respectively. The high device performances of the electron transport layer free blue PHOLEDs were comparable to those of blue PHOLEDs with the electron transport layer.  相似文献   

19.
金属卤化物钙钛矿材料由于具有高的光致发光量子产率、高色纯度、带隙可调等杰出的光学性能,被作为发光材料广泛地用于制备钙钛矿电致发光二极管(perovskite light-emitting diodes,PeLEDs).虽然取得了较好的研究进展,但是其效率和稳定性还未达到商业化的要求,还需要进一步提高.为了提高PeLEDs的效率和稳定性,本文使用旋涂法,引入了一种具有宽带隙和较好空穴传输能力的有机小分子材料4,4′-cyclohexylidenebis[N,N-bis(p-tolyl)aniline](TAPC)作为激子阻挡层,获得了效率和寿命都得到提高的全无机PeLEDs.研究表明,PeLEDs效率和寿命得到提高的物理机制主要源于两方面:1)TAPC具有恰当的最高占有分子轨道能级,与PEDOT:PSS的最高占有分子轨道能级和CsPbBr3的价带边形成了阶梯式能级分布,有利于空穴注入和传输;同时TAPC具有较高的最低未占分子轨道能级,能够有效地阻止电子泄漏到阳极端,并能很好地将电子和激子限制在发光层内;2)TAPC层的引入可以避免钙钛矿发光层与强酸性的空穴注入材料Poly(3,4-ethylenedioxythiophene):poly(p-styrene sulfonate)(PEDOT:PSS)的直接接触,进而免除钙钛矿发光层由于与PEDOT:PSS的直接接触所导致的激子淬灭,从而提高了激子的发光辐射复合率.  相似文献   

20.
In this study,the efficiency droop of an InGaN light-emitting diode(LED)is reduced significantly by using a pAlGaN/GaN superlattice last quantum barrier.The reduction in efficiency droop is mainly caused by the decrease of electron current leakage and the increase of hole injection efficiency,which is revealed by investigating the light currents,internal quantum efficiencies,energy band diagrams,carrier concentrations,carrier current densities,and radiative recombination efficiencies of three LED structures with the advanced physical model of semiconductor device(APSYS).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号