首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
SDS capillary gel electrophoresis is a widely used in the biopharma and the biomedical fields for rapid size separation of proteins. However, very limited information is available on the use of dilute and ultra-dilute sieving matrices for SDS–protein analysis. Here, background electrolytes (BGEs) containing 1%–0% dextran were used in borate-based BGE to separate a protein sizing ladder (PSL) ≤225 kDa and the intact and subunit forms of a therapeutic monoclonal antibody (mAb). The separation performance for the PSL and mAb components differed significantly with decreasing dextran concentration. Ferguson and reptation plots were used to elucidate the separation mechanism. Highly diluted dextran solutions resulted in linear Ferguson plots for both solute types (cf. Ogston theory) in spite of this model assumes a rigid pore structure, thus cannot describe the separation mechanism in ultra-dilute polymer solutions with no reticulations. The saddle differences between the resolution of the PSL and the intact/subunit mAb forms in ultra-dilute dextran-borate matrices suggested the importance of shape selectivity, manifested by the adequate separation of the SDS covered intact as well as light and heavy chain subunits of the therapeutic mAb even at zero dextran concentration.  相似文献   

2.
S Hu  L Zhang  L M Cook  N J Dovichi 《Electrophoresis》2001,22(17):3677-3682
Capillary Sodium dodlecyl sulfate (SDS)-DALT an (abbreviation for Dalton) electrophoresis was applied to analysis of proteins in single HT29 human colon adenocarcinoma cells. A vacuum pulse was employed to introduce a single cell into the coated capillary. Once the cell was lysed, proteins were denatured with SDS, fluorescantly labeled with 3-(2-furoyl)-quinoline-2-carboxaldehyde (FQ), and then separated by using 8% pullulan as the sieving matrix. This method offers a few advantages for single-cell protein analysis. First, it provides reproducible separation of single-cell proteins according to their size. Based on comparison with the migration time of standard proteins, most components from a single HT29 cancer cell have molecular masses within the range of 10-100 kDa. Second, as a one-dimensional separation method, it gives fairly good resolution for proteins. Typically, around 30 protein components of a single HT29 cell were resolved, indicating that this method has similar peak capacity to SDS-polyacrylamide gel electrophoresis (PAGE). Third, this method shows high detection sensitivity and wide dynamic range, which is important because of the wide range of protein expression in living systems. Detection limits for standard proteins ranged from 10(-10) to 10(-11) M. Finally, this method provides much higher speed than classical gel electrophoresis methods, and it provides automated anlysis of cellular proteins at the single-cell level; the separation is complete in 30 min and the entire analysis takes approximately 45 min.  相似文献   

3.
To separate and analyze giant and small proteins in the same electrophoresis gel, we have used a 3–15% polyacrylamide gradient gel containing 2.6% of the crosslinker bisacrylamide and 0.2 M of Tris‐acetate buffer (pH 7.0). Samples were prepared in a sample buffer containing lithium dodecyl sulphate and were run in the gel described above using Tris‐Tricine‐SDS‐sodium bisulfite buffer, pH 8.2, as electrophoresis buffer. Here, we show that this system can be successfully used for general applications of SDS‐PAGE such as CBB staining and immunoblot. Thus, by using Tris‐acetate 3–15% polyacrylamide gels, it is possible to simultaneously analyze proteins, in the mass range of 10–500 kDa, such as HERC1 (532 kDa), HERC2 (528 kDa), mTOR (289 kDa), Clathrin heavy chain (192 kDa), RSK (90 kDa), S6K (70 kDa), β‐actin (42 kDa), Ran (24 kDa) and LC3 (18 kDa). This system is highly sensitive since it allows detection from as low as 10 μg of total protein per lane. Moreover, it has a good resolution, low cost, high reproducibility and allows for analysis of proteins in a wide range of weights within a short period of time. All these features together with the use of a standard electrophoresis apparatus make the Tris‐acetate‐PAGE system a very helpful tool for protein analysis.  相似文献   

4.
The previously reported fluorimetric detection of sodium dodecyl sulfate (SDS)-protein in the presence of cascade blue in agarose gel electrophoresis using barbital buffer was found to be equally feasible in the absence of the fluorescent marker and using Tris-Tricinate buffer, provided that SDS was loaded with the sample but not contained in the catholyte. That fluorescent detection is thought to be due to the formation of a moving boundary between leading SDS and trailing barbital, or Tricinate buffer. This hypothesis is supported by the following evidence: (i) The fluorometrically detected band disappears with addition of SDS to the catholyte; (ii) band area is proportional to protein and/or SDS load; (iii) mobility of SDS-proteins differing in mass is the same at agarose concentrations up to 3%; (iv) lowering of protein mobility by increase in gel concentration and/or increase in the size of the SDS-protein leads to band disappearance. Fluorescent detection of the band is like to be nonspecific and due to the light scattering properties of a stack comprising moving boundaries of any analytes with net mobilities intermediate between SDS (or micellar SDS) and the trailing buffer constituent at their regulated very high concentrations. The steady-state stack of SDS-proteins in the size range of 14.4-45.0 kDa, and the transient stack of an SDS-protein of 66.2 kDa have lent themselves to electroelution and characterization by mass of the proteins after removal of SDS and buffer exchange using matrix assisted laser desorption/ionization-time of flight (MALDI-TOF)-mass spectrometry. The possibility to form a stack of protein between leading SDS and trailing buffer anions under conditions of weak molecular sieving (open-pore gel and small-sized protein) contributes to the understanding of moving boundaries in gel electrophoresis, but in view of the narrowly defined conditions, under which this stack forms, is of limited practical significance for the gel electrophoresis of SDS-proteins.  相似文献   

5.
A comparatively new procedure is described for the nonlinear electrophoresis of proteins. Movement and separation of complexes formed by proteins and ionic detergents is first experimentally demonstrated for SDS rainbow colored protein molecular weight markers (Amersham). This result was revealed by SDS-PAGE in an asymmetric zero average pulsed electric field with a peak amplitude of up to 300 V cm(-1) and a frequency of 100 Hz. The highest molecular weight fractions were found to have the highest nonlinear drift velocity. A two-dimensional map of distribution of the protein complexes developed using nonlinear electrophoresis followed by SDS gel electrophoresis in an orthogonal direction, reveals nonuniform distribution of the fractions. Nonlinear electrophoresis can be run without electrode chambers, since the buffer electrolyte is not used up in alternating electric fields. Thus, this new type of electrophoresis can have advantages in microfluidic systems and biochips. Also possible uses are discussed of nonlinear electrophoresis via nonlinear focusing of protein-detergent complexes for further improvement of the SDS-PAGE technique for the separation and examination of these large hydrophobic complexes.  相似文献   

6.
Capillary sodium dodecyl sulfate (SDS)-DALT electrophoresis (SDS-DALT-CE) refers to CE separation of proteins based on their size; DALT is the abbreviation for Dalton, the unit used to describe molecular weight. In this work, seven proteins from 18 to 116 kDa were denatured by SDS, labeled by 3-(2-furoyl) quinoline-2-carboxaldehyde, separated by SDS-DALT-CE in polyethylene oxide sieving matrix, and detected by laser-induced fluorescence (LIF) in a sheath flow cuvette. This method was combined with detergent differential fractionation, which is a protein fractionation method using a series of detergent-containing buffers to sequentially extract protein fractions from cells, to analyze the proteins in HT29 human colon adenocarcinoma cells. In addition, on-column labeling was demonstrated for protein analysis by SDS-DALT-CE with LIF, and applied to analysis of proteins in a single HT29 cancer cell. Most proteins had molecular masses from 10 to 120 kDa. Similar protein profiles were obtained for single cells and protein extract of a large cell population.  相似文献   

7.
Maly IP  Crotet V  Toranelli M 《Electrophoresis》2003,24(14):2272-2276
This study describes an ultrathin-layer sodium dodecyl sulfate (SDS) disc electrophoresis in polyacrylamide gels of a thickness of only 150 microm. By use of 2-amino-2-methyl-1,3-propanediol/glycine instead of traditional Tris/HCl buffer in the resolving phase of the gel, proteins with a wide range of molecular sizes (10 kDa to over 220 kDa) are separated in unusually low-concentrated gels (4%T, 3.3%C). 2-Amino-2-methyl-1,3-propanediol in the resolving part of the gel contributes to stabilization of the pH value at 8.8, while glycine improves destacking as well as separation of small proteins from the bulk of stacked SDS. This method combines both the advantages of conventional slab-gel electrophoresis and capillary gel electrophoresis. It is easy to apply and well suited for all further miniaturization attempts.  相似文献   

8.
Claeys D  Geering K  Meyer BJ 《Electrophoresis》2005,26(6):1189-1199
Two-dimensional (2-D) Blue Native/SDS gel electrophoresis combines a first-dimensional separation of monomeric and multimeric proteins in their native state with a second denaturing dimension. These high-resolution 2-D gels aim at identifying multiprotein complexes with respect to their subunit composition. We applied this method for the first time to analyze two human platelet subproteomes: the cytosolic and the microsomal membrane protein fraction. Solubilization of platelet membrane proteins was achieved with the nondenaturing detergent n-dodecyl-beta-D-maltoside. To validate native solubilization conditions, we demonstrated the correct assembly of the Na,K-ATPase, a functional multimeric transmembrane protein, when expressed in Xenopus oocytes. We identified 63 platelet proteins after in-gel tryptic digestion of 58 selected protein spots and liquid chromatography-coupled tandem mass spectrometry. Nine proteins were detected for the first time in platelets by a proteomic approach. We also show that this technology efficiently resolves several known membrane and cytosolic multiprotein complexes. Blue Native/SDS gel electrophoresis is thus a valuable procedure to analyze specific platelet subproteomes, like the membrane(-bound) protein fraction, by mass spectrometry and immunoblotting and could be relevant for the study of protein-protein interactions generated following platelet activation.  相似文献   

9.
In this paper, we describe a highly specific, sensitive and reliable method for total metallothionein (MT) quantification by RP-HPLC coupled to fluorescence detection following reaction with monobromobimane of thiols from metal-depleted MT after heat-denaturation of extracts in the presence of sodium dodecyl sulphate (SDS). SDS-polyacrylamide gel electrophoresis (SDS-PAGE) confirmed the identity of the peak resolved (t(R)=16.44) with MT: a highly fluorescent protein of approximately 8.3 kDa, in agreement with the high thiol content and low MT size. Other heat-resistant and Cys-containing proteins of 35 kDa were efficiently separated. The new method was successfully used to quantify MT content in digestive gland of clams from southern Spanish coastal sites with different metal levels, and is proposed as a tool for using MTs as biomarker in monitoring programmes.  相似文献   

10.
Simultaneous electrophoresis of both native and Sodium dodecyl sulfate (SDS) proteins was observed on a single microchip within 20 min. The capillary array prevented lateral diffusion of SDS components and avoided cross contamination of native protein samples. The planar sputtered electrode format provided a more uniform distribution of separation voltage into each of the 36 parallel microchannel capillaries than platinum wire electrodes commonly used in conventional electrophoresis. The customized geometry of the stacking capillary machined into the cover plate of the microchip facilitated reproducible sample injection without the requirement for stacking gel. Polyimide served as a mask and facilitated insulation of the anode and cathode to prevent electrode lift off and deterioration during continuous electrophoresis, even at a constant current of 8 mA. Improved protein separation was observed during capillary electrophoresis at lower currents. Ferguson plot analysis confirmed the electrophoretic mobility of native globular proteins in accordance with their charge and size. Corresponding Ferguson plot analysis of SDS-associated proteins on the same chip confirmed separation of marker proteins according to their molecular weight.  相似文献   

11.
Sodium dodecyl sulfate (SDS) is widely used for protein solubilization and for separation of proteins by SDS polyacrylamide gel electrophoresis (SDS-PAGE). However, SDS interferes with other techniques used for characterization of proteins, such as mass spectrometry (MS) and amino acid sequencing. In this paper, we have compared three procedures to remove SDS from proteins, including chloroform/methanol/water extraction (C/M/W), cold acetone extraction and desalting columns, in order to find a rapid and reproducible procedure that provides sufficient reduction of SDS and high recovery rates for proteins prior to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). A 1000-fold reduction of SDS concentration and a protein recovery at approximately 50% were obtained with the C/M/W procedure. The cold acetone procedure gave a 100-fold reduction of SDS and a protein recovery of approximately 80%. By using desalting columns, the removal of SDS was 100-fold, with a protein recovery of nearly 50%. Both the C/M/W and the cold acetone methods provided sufficient reduction of SDS, high recovery rates of protein and allowed the acquisition of MALDI spectra. The use of n-octyl-beta-D-glucopyranoside in the protein sample preparation enhanced the MALDI signal for protein samples containing more than 2 10(-4)% SDS, after the C/M/W extraction. Following the cold acetone procedure, the use of n-octylglucoside was found to be necessary in order to obtain spectra, but they were of lower quality than those obtained with the C/M/W method, probably due to higher residual amounts of SDS.  相似文献   

12.
Summary A simple method is described for electrophoretic desorption of proteins from antigen-antibody complexes, with more than 90% recovery and without denaturation, after immunosorbent affinity chromatography. Radiolabeled or unlabeled human serum albumin (HSA) and α-1-antitrypsin (AAT), conjugated to rabbit anti-HSA or anti-AAT polyclonal antisera, respectively, were electrophoretically desorbed from Sepharose 4B. In addition, purification and concentration of the major HSA protein band (monomer) of 68 kD from the other oligomeric protein bands were achieved by use of a two-membrane system in a simple electroelution apparatus. The system consisted of an upper cellulose acetate membrane, with pore size 20 nm and separation limit 70 kD, and a lower dialysis cellophane membrane with molecular weight cut-off from 1–50 kD that cnables separation according to size. Furthermore, purification of the monomer HSA or AAT from normal human serum was performed with 92% recovery. Homogeneity was implied by the presence of one band after sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis, Western blot, and autoradiography.  相似文献   

13.
To facilitate a direct interface between protein separation by PAGE and protein identification by mass spectrometry, we developed a multichannel system that continuously collects fractions as protein bands migrate off the bottom of gel electrophoresis columns. The device was constructed using several short linear gel columns, each of a different percent acrylamide, to achieve a separation power similar to that of a long gradient gel. A “Counter Free‐Flow” elution technique then allows continuous and simultaneous fraction collection from multiple channels at low cost. We demonstrate that rapid, high‐resolution separation of a complex protein mixture can be achieved on this system using SDS‐PAGE. In a 2.5 h electrophoresis run, for example, each sample was separated and eluted into 48–96 fractions over a mass range of ~10–150 kDa; sample recovery rates were 50% or higher; each channel was loaded with up to 0.3 mg of protein in 0.4 mL; and a purified band was eluted in two to three fractions (200 μL/fraction). Similar results were obtained when running native gel electrophoresis, but protein aggregation limited the loading capacity to about 50 μg per channel and reduced resolution.  相似文献   

14.
Highly homogenous α zein protein was isolated from maize kernels in an environment‐friendly process using 95% ethanol as solvent. Due to the polyploidy and genetic polymorphism of the plant source, the application of high resolution separation methods in conjunction with precise analytical methods, such as MALDI‐TOF‐MS, is required to accurately estimate homogeneity of products that contain natural zein protein. The α zein protein product revealed two main bands in SDS‐PAGE analysis, one at 25 kDa and other at 20 kDa apparent molecular mass. Yet, high resolution 2DE revealed approximately five protein spot groups in each row, the first at ca. 25 kDa and the second at ca. 20 kDa. Peptide mass fingerprinting data of the proteins in the two dominant SDS‐PAGE bands matched to 30 amino acid sequence entries out of 102 non‐redundant data base entries. MALDI‐TOF‐MS peptide mapping of the proteins from all spots indicated the presence of only α zein proteins. The most prominent ion signals in the MALDI mass spectra of the protein mixture of the 25 kDa SDS gel band after in‐gel digestion were found at m/z 1272.6 and m/z 2009.1, and the most prominent ion signals of the protein mixture of the 20 kDa band after in‐gel digestion were recorded at m/z 1083.5 and m/z 1691.8. These ion signals have been found typical for α zein proteins and may serve as marker ion signals which upon chymotryptic digestion reliably indicate the presence of α zein protein in two hybrid corn products.  相似文献   

15.
Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) is often used for subunit analysis of proteins, but it is not efficient to make the α- and β-subunits of phycoerythrins separated by normal SDS-PAGE. In this research, subunit components and subunit molecular weights of four purified phycoerythrins were analyzed by SDS-PAGE. Four factors including Tris concentration, pH, ammonium persulfate (APS), and SDS concentration were studied for their effects on SDS-PAGE of phycoerythrins. It showed that these factors can influence the separation of α- and β-subunits, electrophoresis effect of γ-subunits, apparent molecular weights of subunits, and mobility of marker proteins. The α- and β-subunits separated better in the case of lower SDS concentration, lower Tris concentration, higher pH, and/or lower APS addition in separating gels. The molecular weights of α- and β-subunits increased when Tris concentration increased in a certain range. It can be concluded that factors critical to subunit analysis by SDS-PAGE are SDS concentration and ionic strength, both of which are related to critical micelle concentration of SDS and ratio of SDS monomer to micelle in SDS-PAGE system. The ratio is postulated to influence SDS-PAGE by influencing the amount of SDS bound to polypeptides and shapes of polypeptide–SDS complexes.  相似文献   

16.
Liu Y  Lin Y  Yan Y  Li J  He Q  Chen P  Wang X  Liang S 《Electrophoresis》2012,33(2):316-324
SDS is mostly used to enhance the solubilization and extraction of membrane proteins due to its strong detergency and low cost. Nevertheless, SDS interferes with the subsequent procedures and needs to be removed from the samples. In this work, a special gradient gel electrophoresis (GGE) system was developed to remove SDS from the SDS-solubilized protein samples. As a proof-of-principle experiment, the GGE system was designed to be composed of an agarose loading layer, six polyacrylamide fractionation layers with different concentrations and a high-concentration polyacrylamide sealing layer. The advantages of the GGE system are that it not only can electrophoretically remove SDS efficiently so that the protein loss resulted from the repeated gel washing after electrophoresis was avoided, but also can reduce the complexity of the sample, prevent the precipitation of proteins after loading and avoid the loss of proteins with low molecular weight during the electrophoresis. Using GGE system, about 85% of SDS in the sample and gel was electrophoretically removed and the proteins were fractionated. Compared with the two representative gel-based sample cleanup methods reported in literature, GGE-based strategy significantly improved the identification efficiency of proteins in terms of the number and coverage of the identified proteins.  相似文献   

17.
Cooper JW  Gao J  Lee CS 《Electrophoresis》2004,25(9):1379-1385
An electronic protein transfer technique is described for achieving the rapid and efficient recovery of sodium dodecyl sulfate (SDS)-protein complexes from polyacrylamide gels. This process involves the use of small-dimension capillaries in physical contact with a resolved protein band within the polyacrylamide gel, providing a large potential drop and high electric field strength at the capillary/gel interface. Several factors controlling the electronic protein transfer, including the applied electric field strength, the electrophoresis buffer concentration, and the capillary dimension, are studied to further enhance the use of field-amplification for sample stacking of extracted SDS-protein complexes. As a result of sample stacking, the extracted proteins from a 50 ng gel loading are present in a narrow ( approximately 80 nL) and highly concentrated (0.46 mg/mL or 3.3 x 10(-5) M for cytochrome c) solution plug. Three model proteins with molecular mass ranging from 14 kDa (cytochrome c) to 116 kDa (beta-galactosidase) are stained by Coomassie blue and electrophoretically extracted from gels with protein loadings as low as 50 ng. The capillary format of the electronic protein transfer technique allows direct deposition of extracted proteins onto a matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) target. Various matrices and solvent compositions are evaluated for the analysis of extracted and concentrated SDS-protein complexes using MALDI-MS. The electronic protein transfer technique, when operated under optimized conditions, is demonstrated for the effective (>70% recovery), speedy (less than 5 min), and sensitive MS identification of gel resolved proteins (as low as 50 ng).  相似文献   

18.
Gel electrophoresis is one of the most frequently used tools for the separation of complex biopolymer mixtures. In recent years, there has been considerable activity in the separation and characterization of protein molecules by sodium dodecylsulfate (SDS) gel electrophoresis with particular interest in using this technique to separate on the basis of size and to estimate molecular mass and protein purity. Although the method is informative, it is cumbersome, time consuming and lacks automation. In this paper we report an automated, high-performance SDS gel electrophoresis system that is based on electric-field-mediated separation of SDS-protein complexes using an ultra-thin-layer platform. The integrated fiber optic bundle-based scanning laser-induced fluorescence detection technology readily provided high sensitivity, real-time detection of the migrating solute molecules. Rapid separations of covalently and non-covalently labeled proteins were demonstrated in the molecular mass range 14,000 to 205,000 in less than 9 and 16 min, respectively. Excellent quantitation and lane-to-lane migration time reproducibility were found for all the solute components using the multilane separation platform. The limit of detection was found to be 1.5-3 ng/band for both labeling methods, with excellent linearity over a six times serial double-dilution range. Molecular mass calibration plots were compared for both covalently and non-covalently labeled proteins. A linear relationship was found between the molecular mass and electrophoretic mobility in the case of covalently labeled samples, while a non-linear relationship was revealed for the non-covalently labeled samples.  相似文献   

19.
This paper discusses the effects of gel composition and separation temperature on the migration properties of fluorescein-5-isothiocyanate-labeled protein molecular mass markers (ranging from 20 100 to 205 000 Da) in automated ultrathin-layer sodium dodecyl sulfate (SDS) gel electrophoresis. The separation mechanism with the agarose and composite agarose - linear polyacrylamide, agarose - hydroxyethyl cellulose, and agarose - polyethylene oxide matrices were all found to comply with the Ogston sieving model in the molecular mass range of the protein molecules investigated. Our temperature studies revealed that electrophoretic separation of SDS protein complexes is an activated process and, in pure agarose and in composite agarose hydroxyethyl cellulose and agarose - polyethylene oxide matrices that the separation requires increasing activation energy as a function of the molecular mass of the separated proteins. On the other hand, when linear polyacrylamide was used as composite additive, the activation energy demand of the separation decreased with increasing solute molecular mass. The sensitivity of the laser-induced fluorescent detection of the automated ultrathin-layer electrophoresis system was evaluated by injecting a series of dilutions of the markers and was found to be less than 2.5 ng/band for the fluorophore-labeled protein.  相似文献   

20.
Two-dimensional electrophoresis of membrane proteins   总被引:1,自引:0,他引:1  
One third of all genes of various organisms encode membrane proteins, emphasizing their crucial cellular role. However, due to their high hydrophobicity, membrane proteins demonstrate low solubility and a high tendency for aggregation. Indeed, conventional two-dimensional gel electrophoresis (2-DE), a powerful electrophoretic method for the separation of complex protein samples that applies isoelectric focusing (IEF) in the first dimension and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) in the second dimension, has a strong bias against membrane proteins. This review describes two-dimensional electrophoretic techniques that can be used to separate membrane proteins. Alternative methods for performing conventional 2-DE are highlighted; these involve replacing the IEF with electrophoresis using cationic detergents, namely 16-benzyldimethyl-n-hexadecylammonium chloride (16-BAC) and cetyl trimethyl ammonium bromide (CTAB), or the anionic detergent SDS. Finally, the separation of native membrane protein complexes through the application of blue and clear native gel electrophoresis (BN/CN-PAGE) is reviewed, as well as the free-flow electrophoresis (FFE) of membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号