首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The temporal instability behavior of a viscoelastic liquid jet in the wind-induced regime with axisymmetric and asymmetric disturbances moving in an inviscid gaseous environment is investigated theoretically. The corresponding dispersion relation between the wave growth rate and the wavenumber is derived. The linear instability analysis shows that viscoelastic liquid jets are more unstable than their Newtonian counterparts, and less unstable than their inviscid counterparts, for both axisymmetric and asymmetric disturbances, respectively. The instability behavior of viscoelastic jets is influenced by the interaction of liquid viscosity and elasticity, in which the viscosity tends to dampen the instability, whereas the elasticity results in an enhancement of instability. Relatively, the effect of the ratio of deformation retardation to stress relaxation time on the instability of viscoelastic jets is weak. It is found that the liquid Weber number is a key measure that controls the viscoelastic jet instability behavior. At small Weber number, the axisymmetric disturbance dominates the instability of viscoelastic jets, i.e., the growth rate of an axisymmetric disturbance exceeds that of asymmetric disturbances. When the Weber number increases, both the growth rate and the instability range of disturbances increase drastically. The asymptotic analysis shows that at large Weber number, more asymmetric disturbance modes become unstable, and the growth rate of each asymmetric disturbance mode approaches that of the axisymmetric disturbance. Therefore, the asymmetric disturbances are more dangerous than that of axisymmetric disturbances for a viscoelastic jet at large Weber numbers. Similar to the liquid Weber number, the ratio of gas to liquid density is another key measure that affects the viscoelastic jet instability behavior substantially.  相似文献   

2.
A linear model of a two-fluid channel flow under streamwise/spanwise electric field is built. Both the fluids are assumed to be incompressible, viscous and perfectly dielectric. The effect of the streamwise and spanwise electric fields on transient behavior of small three-dimensional disturbances is studied. The numerical result shows that the streamwise electric field suppresses transient growth of the disturbance with spanwise uniform wave number. The spanwise electric field diminishes transient growth of the disturbance with streamwise uniform wave number. Two peaks of optimal growth are detected in the wave number plane. The peak at relatively large spanwise wave number is dominated by the lift-up mechanism and little influenced by electric field. Differently, the peak at relatively small wave number is associated with the characteristic of the interface and possibly influenced by electric field. The effect of the Weber number, the Reynolds number and the relative electrical permittivity on optimal growth is studied as well. A scaling law is obtained for relatively small Weber numbers and relatively large Reynolds numbers.  相似文献   

3.
The instability of circular liquid jet immersed in a coflowing high velocity air stream is studied assuming that the flow of the viscous gas and liquid is irrotational. The basic velocity profiles are uniform and different. The instabilities are driven by Kelvin–Helmholtz instability due to a velocity difference and neckdown due to capillary instability. Capillary instabilities dominate for large Weber numbers. Kelvin–Helmholtz instability dominates for small Weber numbers. The wavelength for the most unstable wave decreases strongly with the Mach number and attains a very small minimum when the Mach number is somewhat larger than one. The peak growth rates are attained for axisymmetric disturbances (n = 0) when the viscosity of the liquid is not too large. The peak growth rates for the first asymmetric mode (n = 1) and the associated wavelength are very close to the n = 0 mode; the peak growth rate for n = 1 modes exceeds n = 0 when the viscosity of the liquid jet is large. The effects of viscosity on the irrotational instabilities are very strong. The analysis predicts that breakup fragments of liquids in high speed air streams may be exceedingly small, especially in the transonic range of Mach numbers.  相似文献   

4.
In the present study, the spatial instability for a two‐dimensional viscous liquid sheet, which is thinning with time, has been analysed. The study includes the derivation of a spatial dispersion equation, numerical solutions for the growth rate of sinuous disturbances, and parameter sensitivity studies. For a given wave number, the growth rate of the disturbance is essentially a function of Weber number, Reynolds number, and gas/liquid density ratio. The analysis indicates that the cut‐off wave number of the disturbance becomes larger with an increase in Weber number or gas/liquid density ratio. Thus, the liquid sheet should produce finer drops. When the Reynolds number decreases, the higher viscosity has a greater damping effect on shorter waves than longer waves. This could explain that only large drops and ligaments were observed in past measurements for the disintegration of a very viscous sheet. The spatial instability results of the present study were also compared with the temporal theory. The importance of spatial analysis was found and demonstrated for the cases of low Weber numbers. The temporal theory underestimates growth rates when the Weber number is less than 100. The discrepancy between the two theories increases as the Weber number further decreases. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
The viscous and conductivity effects on the instability of a rapidly expanding material interface produced by a spherical shock tube are investigated through the employment of a high-order WENO scheme. The instability is influenced by various mechanisms, which include (a) classical Rayleigh–Taylor (RT) effects, (b) Bell–Plesset or geometry/curvature effects, (c) the effects of impulsively accelerating the interface, (d) compressibility effects, (e) finite thickness effects, and (f) viscous effects. Henceforth, the present instability studied is more appropriately referred to as non-classical RT instability to distinguish it from classical RT instability. The linear regime is examined and the development of the viscous three-dimensional perturbations is obtained by solving a one-dimensional system of partial differential equations. Numerical simulations are performed to illustrate the viscous effects on the growth of the disturbances for various conditions. The inviscid analysis does not show the existence of a maximum amplification rate. The present viscous analysis, however, shows that the growth rate increases with increasing the wave number, but there exists a peak wavenumber beyond which the growth rate decreases with increasing the wave number due to viscous effects.  相似文献   

6.
The Kelvin-Helmholtz instability of a compressible plasma in a uniform magnetic field with respect to disturbances propagating along the flow is considered. First, the case with the magnetic field parallel to the direction of streaming is considered. The result given by Sen [4] that the compressibility effects destabilize an otherwise neutrally stable system even in the hydrodynamic limit is apparently erroneous. Re-examination of the dispersion relation in the limit of small compressibility effects shows that the latter reduce the growth rate of an otherwise unstable disturbance. Attention is also drawn to errors in the calculations of Fejer [2] in the limit of small compressibility effects. Next, the case with the magnetic field transverse to the direction of streaming is considered. It is found that the transverse magnetic field does influence the stability of the system when the compressibility effects are present, contrary to the result given by Chandrasekhar [1] for the case of an incompressible plasma. However, interestingly enough, the compressibility effects are effectively reduced if a transverse magnetic field is present! It is further shown that the transverse magnetic field reduces the stability of the system.  相似文献   

7.
横向交流电场下液膜参数不稳定性分析   总被引:1,自引:1,他引:0  
当将运动的平面液膜置于横向的交流电场之间时会产生参数振荡现象.为了得到交流电场下平面液膜的色散关系并为液膜的破碎行为分析提供理论基础,本文基于漏电介质模型对液体的电学特性进行假设,对平面液膜在直流和交流电场下的参数不稳定性进行了分析.由于主流是基于时间的流动,在稳定性分析中引入了Floquet理论.在文中,将电场定义为...  相似文献   

8.
 This paper describes an experimental investigation of the effects of mean compressibility on the structure and the decay characteristics of grid turbulence. The experiments comprise laser Doppler velocimetry measurements of an approximately homogeneous, isotropic turbulence field in subsonic compressible flow, with the Mach number ranging from 0.15 to 0.7. The results reveal that the turbulence intensity and decay characteristics are influenced by mean compressibility. Experience with the high subsonic and supersonic regimes is also reported. Received: 27 February 1996/Accepted: 13 February 1997  相似文献   

9.
Previous studies carried out in the early 1990s conjectured that the main compressible effects could be associated with the dilatational effects of velocity fluctuation. Later, it was shown that the main compressibility effect came from the reduced pressure-strain term due to reduced pressure fluctuations. Although better understanding of the compressible turbulence is generally achieved with the increased DNS and experimental research effort, there are still some discrepancies among these recent findings. Analysis of the DNS and experimental data suggests that some of the discrepancies are apparent if the compressible effect is related to the turbulent Mach number, Mt. From the comparison of two classes of compressible flow, homogenous shear flow and inhomogeneous shear flow (mixing layer), we found that the effect of compressibility on both classes of shear flow can be characterized in three categories corresponding to three regions of turbulent Mach numbers: the low-Mr, the moderate-Mr and high-Mr regions. In these three regions the effect of compressibility on the growth rate of the turbulent mixing layer thickness is rather different. A simple approach to the reduced pressure-strain effect may not necessarily reduce the mixing-layer growth rate, and may even cause an increase in the growth rate. The present work develops a new second-moment model for the compressible turbulence through the introduction of some blending functions of Mt to account for the compressibility effects on the flow. The model has been successfully applied to the compressible mixing layers.  相似文献   

10.
11.
We investigate the behavior of flow variables, thermodynamic variables and their interaction in rapidly sheared (S) homogeneous compressible turbulence using rapid distortion theory (RDT). We subject an initially isotropic and incompressible flow field to homogeneous shear-rate of various strengths quantified by a gradient Mach number (M g ) based on characteristic wavenumber. Our objective is to characterize the behavior of flow/thermodynamic fluctuations and their linear interactions during the course of turbulence evolution. Even though the mean shear-rate is held constant, the gradient Mach number progressively diminishes with time as the relevant wavenumber increases due to the mean deformation. The evolution exhibits three distinct phases which we categorize based on the character of pressure as: (i) Pressure-released (PR) stage which is observed when ${St < \sqrt{M_{g0}}}$ and pressure effects are negligible; (ii) Wave-character (WC) stage wherein ${\sqrt{M_{g0}} < St < M_{g0}}$ and the wave character of pressure is in evidence; and (iii) Low-Mach number (LM) stage when St > M g0, where M g0 is the initial gradient Mach number. In the PR regime we find that the thermodynamic fluctuations evolve from their initial state but velocity fluctuations grow unhindered by pressure fluctuations. In the WC regime, the pressure fluctuations become significant and flow-thermodynamic interaction commences. This interaction brings about equipartition of dilatational kinetic energy and thermodynamic potential energy. The interaction also results in stabilization of turbulence, and the total kinetic energy growth comes to a near standstill. Ultimately in the LM stage, kinetic energy starts increasing again with the growth rate being very similar to that in incompressible RDT. However, the thermodynamic fluctuations continue to grow despite the gradient Mach number being substantially smaller than unity. Overall, the study yields valuable insight into the linear processes in high Mach number shear flows and identifies important closure modeling issues.  相似文献   

12.
利用等热流密度加热条件下降膜流动的三维模型方程进行线性稳定性分析和数值模拟。线性稳定性分析表明,模型方程在小到中等Reynolds数下都适用,并且流向不稳定性增长率随着Reynolds数和Marangoni数增加而增加,展向不稳定性增长率则随着Marangoni数增加而增加,随着Reynolds数增加而减小,流向和展向对扰动波数都存在一个不稳定区间。三维数值模拟表明,在等热流密度加热条件下,液膜在随机扰动的情况下最终会形成带孤立波的三维溪流状结构,液膜与气体的换热也因溪流状结构的出现而加强;在随机扰动的基础上引入占优势地位的展向最不稳定扰动会使得换热增强,液膜会提前破裂;在随机扰动的基础上引入占优势地位的流向最不稳定扰动时,液膜的换热会增强,但不会提前破裂;在随机扰动的基础上同时引入占优势地位的流向和展向最不稳定扰动时,换热会加强且液膜会提前破裂。  相似文献   

13.
The effects of air dissociation on ?at-plate hypersonic boundary-layer ?ow instability and transition prediction are studied. The air dissociation reactions are assumed to be in the chemical equilibrium. Based on the ?at-plate boundary layer, the ?ow stability is analyzed for the Mach numbers from 8 to 15. The results reveal that the consideration of air dissociation leads to a decrease in the unstable region of the ?rst-mode wave and an increase in the maximum growth rate of the second mode. High frequencies appear earlier in the third mode than in the perfect gas model, and the unstable region moves to a lower frequency region. When the Mach number increases, the second-mode wave dominates the transition process, and the third-mode wave has little effect on the transition. Moreover, when the Mach number increases from 8 to 12, the N-factor envelope becomes higher, and the transition is promoted. However, when the Mach number exceeds 12, the N-factor envelope becomes lower, and the transition is delayed. The N-factor envelope decreases gradually with the increase in the altitude or Mach number.  相似文献   

14.
《Fluid Dynamics Research》2007,39(5):389-412
We investigate the linear and nonlinear instability of a planar liquid sheet with surrounding fluids between two parallel plane solid walls. Linear analysis shows that the maximum temporal growth rate and unstable wave number region of disturbances increase for the dilational and sinuous modes when the gap between the sheet and the wall decreases. The walls have more influence on the instability when the density ratio of the surrounding fluid to the sheet and/or the Weber number decrease. On the other hand, nonlinear analysis is performed by means of the discrete vortex method, where double vortex rows and their mirror images are placed so as to satisfy the boundary condition on the walls. Numerical results show that the walls enhance nonlinearity, which causes deformation and distortion of the sheet, whereas the nonlinearity diminishes linear growth rates except for long dilational disturbances. In particular, as the walls are placed more closely to the sheet, local sheet thinning becomes more pronounced in the long dilational mode, while the dilational mode is more strongly induced from the sinuous mode through monotonic or periodic energy exchanges between the two modes.  相似文献   

15.
In this paper we present a theoretical and numerical study of the growth of linear disturbances in the high Reynolds number laminar compressible wake behind a flat plate which is aligned with a uniform stream. No ad hoc assumptions are made as to the nature of the undisturbed flow (in contrast to previous investigations) but instead the theory is developed rationally by use of proper wake profiles which satisfy the steady equations of motion. The initial growth of near-wake perturbations is governed by the compressible Rayleigh equation which is studied analytically for long and short waves. These solutions emphasize the asymptotic structures involved and provide a rational basis for a nonlinear development. The phenomenon of enhanced stability with increasing Mach number observed in compressible free shear-layers is demonstrated analytically for short- and long-wavelength disturbances. The evolution of arbitrary wavelength perturbations is addressed numerically and spatial stability solutions are presented that account for the relative importance of the different physical mechanisms present, such as three-dimensionality, increasing Mach numbers, and the nonparallel nature of the mean flow. Our findings indicate that for low enough (subsonic) Mach numbers, there exists a region of absolute instability very close to the trailing edge with the majority of the wake being convectively unstable. At higher Mach numbers (but still not large—hypersonic) the absolute instability region seems to disappear and the maximum available growth rates decrease considerably. Three-dimensional perturbations provide the highest spatial growth rates.This work was carried out while the author was a summer visitor at the Institute for Computer Applications in Science and Engineering, NASA Langley Research Center under NASA Contract No. NAS1-18605.  相似文献   

16.
吕明  宁智  阎凯 《力学学报》2018,50(3):561-569
液体射流热稳定性研究是对射流稳定性问题的更深层次的探讨,可以进一步加深对液体射流分裂与雾化机理的认识,具有重要的学术意义和工程应用价值. 基于射流稳定性理论,在同时考虑射流周围气体旋转、射流和周围气体可压缩性以及射流液体中含空化气泡的条件下,建立了描述可压缩旋转气体中超空化射流热稳定性的数学模型,并对数学模型及其求解方法进行了验证分析;在此基础上,分析了液体射流表面与周围气体间温差及射流内部温度梯度同时作用下对射流稳定性的影响;并进一步探讨了超空化射流的热稳定性. 结果表明,射流表面扰动波的最大扰动增长率、最不稳定频率以及最大扰动波数皆随气液温差的增大呈近似线性增大趋势;射流内部温度梯度的存在使得气液温差对射流的失稳作用更加显著;射流内部温度梯度会抑制超空化对射流稳定性的影响,但气液温差会在一定程度上促进超空化对射流的失稳作用.   相似文献   

17.
Rough surfaces are common on high-speed vehicles, for example on heat shields, but compressibility is not usually taken into account in the flow modelling other than through the mean density. In the present study, supersonic fully-developed turbulent rough wall channel flows are simulated using direct numerical simulation to investigate whether strong compressibility effects significantly alter the mean flow and turbulence properties across the channel. The simulations were run for three different Mach numbers M = 0.3, 1.5 and 3.0 over a range of wall amplitude-to-wavelength ratios from 0.01 to 0.08, corresponding to transitionally and fully rough cases respectively. The velocity deficit values are found to decrease with increasing Mach number. It is also found that at Mach 3.0 significant differences occur in the mean flow and turbulence statistics throughout the channel and not just in a roughness sublayer. These differences are found to be due to the presence of strong shock waves created by the peaks of the roughness elements.  相似文献   

18.
Free oscillations of a single spherical gas bubble in glycerol have been examined numerically and experimentally at different ambient temperatures and pressures. The bubble was generated using a Q-switched Nd:YAG laser and the unsteady radius measurement was based on a shadowing technique of a He–Ne laser beam. The measurements were compared to computations obtained from two models, first taking into consideration the liquid compressibility and then assuming an incompressible liquid domain, respectively. In both cases the temperature fields inside and outside the bubble were computed by solving the energy equation in both phases as the thermodynamic processes have great importance to the bubble behavior. For high amplitude oscillations the incompressible model provides poor agreement with the measurements and the modeling of the liquid compressibility becomes necessary. In contrast to the standard method, a practical region of applicability for the incompressible approach was determined as a function of the instantaneous Mach and Reynolds numbers, rather than specifying a simple threshold Mach number.  相似文献   

19.
This work presents a mixed three‐dimensional finite element formulation for analyzing compressible viscous flows. The formulation is based on the primitive variables velocity, density, temperature and pressure. The goal of this work is to present a ‘stable’ numerical formulation, and, thus, the interpolation functions for the field variables are chosen so as to satisfy the inf–sup conditions. An exact tangent stiffness matrix is derived for the formulation, which ensures a quadratic rate of convergence. The good performance of the proposed strategy is shown in a number of steady‐state and transient problems where compressibility effects are important such as high Mach number flows, natural convection, Riemann problems, etc., and also on problems where the fluid can be treated as almost incompressible. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
The stability of an axisymmetric flow of viscous gas in a circular pipe, which models the Burgers vortex in the pipe axis neighborhood, is studied within the linear theory framework. Neutral curves for the most unstable disturbances are calculated. The influence of the characteristic Mach number on the flow stability is investigated. It is shown that for a given model velocity distribution the Mach number affects only the temperature and pressure profiles of the main undisturbed flow. In this case, for the disturbance types considered, as the Mach number increases, the critical Reynolds number corresponding to loss of stability decreases. Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 35–41, January–February, 1999. The work received financial support from the Russian Foundation for Basic Research (project No. 96-01-00586).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号