首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Molecule-coated nanoparticles are hybrid materials which can be engineered with novel properties. The molecular coating of metal nanoparticles can provide chemical functionality, enabling assembly of the nanoparticles that are important for applications, such as biosensing devices. Herein, we report a new self-assembly of core-satellite gold nanoparticles linked by a simple amino acid l-Cysteine for biosensing of Cu2+. The plasmonic properties of core-satellite nano-assemblies were investigated, a new red shifted absorbance peak from about 600 to 800 nm was found, with specific wavelength depending on ratios with assembly of large and small gold nanoparticles. The spectral features obtained using surface-enhanced Raman spectroscopy (SERS) provided strong evidence for the assembly of the Cu2+ ions to the L-Cysteine molecules leading to the successful formation of the core-satellite Cu(l-Cysteine) complex on the gold surfaces. In addition, a linear relationship between the concentration of mediating Cu2+ and absorbance of self-assembled gold nanoparticles (GNPs) at 680 nm was obtained. These results strongly address the potential strategy for applying the functionalized GNPs as novel biosensing tools in trace detections of certain metal ions.  相似文献   

2.
3.
4.
Self-assembly is a versatile bottom-up approach for fabricating novel supramolecular materials with well-defined nano- or micro-structures associated with functionalities. The oil-water interface provides an ideal venue for molecular and colloidal self-assembly. This paper gives an overview of various self-assembled materials, including nanoparticles, polymers, proteins, and lipids, at the oil-water interface. Focus has been given to fundamental principles and strategies for engineering the self-assembly process, such as control of pH, ionic strength and use of external fields, to achieve complex soft materials with desired functionalities, such as nanoparticle surfactants, structured liquids, and proteinosomes. It has been shown that self-assembly at the oil-water interface holds great promise for developing well-structured complex materials useful for many research and industrial applications.  相似文献   

5.
The poly-o-phenylenediamine (PoPD) nonconducting film and gold nanoparticles (AuNPs) were combined to fabricate AuNPs/PoPD film, which is used as a novel biocompatible interface for the immobilization of antibody and develop a simple and sensitive label-free immunoassay for the detection of the related antigen (human immunoglobulin G (IgG)). Surface plasmon resonance (SPR) and electrochemical methods were used to provide the real-time information about the polymer film growth, assembling of various sizes of gold nanoparticles, anti-human IgG antibody (anti-hIgG) immobilization and the antigen–antibody interaction. The microstructures of the PoPD and AuNPs/PoPD films were characterized by atomic force microscopy (AFM). These results demonstrated that AuNPs were uniformly dispersed on the porous surface of PoPD film, which formed a nano-structure biocompatible AuNPs/PoPD interface. The use of gold nanoparticles and PoPD film could enhance the immunoassay sensitivity and anti-nonspecific property of the resulting immunoassay electrode. Additionally, the reproducibility and preliminary application of anti-hIgG/AuNPs/PoPD/Au electrode for SPR detection of hIgG was also evaluated.  相似文献   

6.
Einat Wirtheim 《Tetrahedron》2009,65(35):7268-9067
In this paper we present the synthesis and characterization of a new family of thio-ether-footed resorcin[4]arenes (2-4). Diffusion NMR was used to follow the self-assembly of 2-4 in CDCl3 and CHCl3 solutions. We found that all three molecules self-assemble into hexameric capsules. These capsules can accommodate both tertiary alkylamines and ammonium salts. From the diffusion NMR data we could conclude that the hexameric capsules of compounds 2-4 are of nearly equal stability and prevail in other organic solvents, such as dichloromethane and benzene but not in tetrahydrofuran (THF). By measuring the diffusion coefficients of 2-4 in different concentrations, we found that further aggregation, beyond the hexameric aggregates, is obtained, especially in the case of 2 at high concentrations. Different diffusion NMR techniques revealed that water molecules are part of the hexameric capsules of 2-4 in chloroform solutions. In addition diffusion NMR was used to examine the interactions of compounds 2-4 with gold nanoparticles in chloroform solution and provided an unequivocal evidence for the attachment of 2-4 to the surface of gold nanoparticles. No evidence was found for the formation of higher aggregates on the gold nanoparticles.  相似文献   

7.
A novel microreactor was prepared by self-assembly of an amphiphilic block copolymer composed of a hydrophobic helical peptide unit with a naphthyl group at the C terminal and a hydrophilic poly(ethylene glycol) unit. The copolymer formed a self-assembly in water, taking a vesicular structure. Noticeably, when the copolymer was dispersed in an Au(3+) aqueous solution, gold nanoparticles were formed without addition of any reducing reagent. The naphthyl groups, which are located at the inner surface of the vesicular assembly, promoted the reduction of Au(3+) ions with accompanying pH decrease.  相似文献   

8.
We report here the fabrication of a flower-like self-assembly of gold nanoparticles (AuNPs) on a glassy carbon electrode (GCE) as a highly sensitive platform for ultratrace Cr(VI) detection. Two AuNP layers are used in the current approach, in which the first is electroplated on the GCE surface as anchors for binding to an overcoated thiol sol–gel film derived from 3-mercaptopropyltrimethoxysilane (MPTS). The second AuNP layer is then self-assembled on the surface of the sol–gel film, forming flower-like gold nanoelectrodes enlarging the electrode surface. When functionalized by a thiol pyridinium, the fabricated electrode displays a well-defined peak for selective Cr(VI) reduction with an unusually large, linear concentration range of 10–1200 ng L−1 and a low detection limit of 2.9 ng L−1. In comparison to previous approaches using MPTS and AuNPs on Au electrodes, the current work expands the use of AuNPs to the GCE. Subsequent functionalization of the secondary AuNPs by a thiol pyridinium and adsorption/preconcentration of Cr(VI) lead to the unusually large detection range and high sensitivity. The stepwise preparation of the electrode has been characterized by electrochemical impedance spectroscopy (EIS), scanning electronic microscopy (SEM), and IR. The newly designed electrode exhibits good stability, and has been successfully employed to measure chromium in a pre-treated blood sample. The method demonstrates acceptable fabrication reproducibility and accuracy.  相似文献   

9.
Two reduction-cleavable ABA triblock copolymers possessing two disulfide linkages, PMMA-ss-PMEO3MA-ss-PMMA and PDEA-ss-PEO-ss-PDEA were synthesized via facile substitution reactions from homopolymer precursors, where PMMA, PMEO3MA, PDEA, and PEO represent poly(methyl methacrylate), poly(tri(ethylene glycol) monomethyl ether methacrylate, poly(2-(diethylamino)ethyl methacrylate), and poly(ethylene oxide), respectively. Spherical micelles were obtained through supramolecular self-assembly of these two triblock copolymers in aqueous solutions. The resultant micelles with abundant disulfide bonds could serve as soft templates and precisely accommodate gold nanoparticles in the core/shell interface as a result of the formation of Au-S bonds.  相似文献   

10.
Jianwen Wang  Yifeng Tu 《Talanta》2009,77(4):1454-4466
A novel disposable third-generation hydrogen peroxide (H2O2) biosensor based on horseradish peroxidase (HRP) immobilized on the gold nanoparticles (AuNPs) electrodeposited indium tin oxide (ITO) electrode is investigated. The AuNPs deposited on ITO electrode were characterized by UV-vis, SEM, and electrochemical methods. The AuNPs attached on the ITO electrode surface with quasi-spherical shape and the average size of diameters was about 25 nm with a quite symmetric distribution. The direct electron chemistry of HRP was realized, and the biosensor exhibited excellent performances for the reduction of H2O2. The amperometric response to H2O2 shows a linear relation in the range from 8.0 μmol L−1 to 3.0 mmol L−1 and a detection limit of 2 μmol L−1 (S/N = 3). The value of HRP immobilized on the electrode surface was found to be 0.4 mmol L−1. The biosensor indicates excellent reproducibility, high selectivity and long-term stability.  相似文献   

11.
Nanometer-sized gold particles—gold nanoparticles (Au NPs)—are attracting a great deal of attention for their use in various technologies, including catalysis, optical and electronic devices, and separation science. In the emerging field of nanomaterials, the design, synthesis, and characterization of nanostructures are critical features because the manipulation of these structures has a direct effect on their resulting macroscopic properties. Nanostructures fabricated in layers on surfaces—for example, through self-assembly processes—have several potential applications in separation science. This review provides an introduction to the characterizations of Au NPs using size exclusion chromatography, high performance liquid chromatography (HPLC), and electrophoresis, and their self-assembly onto solid supports for analyses based on HPLC, gas chromatography, and capillary electrophoresis. In addition, sample concentration strategies involving the use of self-assembly approaches for surface modification of Au NPs are also discussed.  相似文献   

12.
Adsorptive behaviour of the methylamine molecules has been investigated by measuring changes in the differential capacitance of the double layer at the gold/solution interface by the tensammetric method. The differences in adsorption parameters at Θ < 0.8 and >0.8 have been explained by changes in arrangement of the adsorbate.  相似文献   

13.
We report our findings that natural flavonoids such as quercetin, daizeol and puerarin can act as reductants for the enlargement of gold nanoparticles (Au-NPs). Consequently, the UV–vis spectra of a solution containing Au-NPs will be gradually changed, and the molecules of the natural herbs can be detected by making use of changes in the UV–visible spectra. Furthermore, we have prepared a self-assembled monolayer modified electrode by modifying cysteamine on a gold substrate electrode, which is further modified by some Au-NP seeds. When the modified electrode is immersed in a solution containing flavonoids and tetrachloroauric acid as a gold source for the growth of the Au-NP seeds, with the increase of the concentration of flavonoids, the Au-NP seeds on the surface of the modified electrode can be enlarged to varying degrees. As a result, the peak currents in the corresponding cyclic voltammograms are inversely decreased, and simultaneously the peak separation is increased. Therefore, an electrochemical method to detect flavonoids is also proposed. Compared with the optical detection method, the electrochemical method has an extraordinarily lower detection limit and a significantly extended detection range. Moreover, the optical and electrochemical experimental results can be also used to assay and compare the relative antioxidant activities of the flavonoids. Figure Enlargement of Au nanoparticles by flavonoids at cysteamine modified electrode  相似文献   

14.
In this paper, we report that thin gold films can be prepared on the water/toluene interface by self-assembly of gold nanoparticles (NPs) and fullerene pyridyl derivatives. The assembled films were characterized using UV–vis spectroscopy and transmission electron microscope (TEM). The films show self-repairing and superhydrophobic properties.  相似文献   

15.
A facile green biosynthesis method has been successfully developed to prepare gold nanoparticles (AuNPs) of various core sizes (25 ± 7 nm) using a natural biomaterial, eggshell membrane (ESM) at ambient conditions. In situ synthesis of AuNPs-immobilized ESM is conducted in a simple manner by immersing ESM in a pH 6.0 aqueous solution of HAuCl4 without adding any reductant. The formation of AuNPs on ESM protein fibers is attributed to the reduction of Au(III) ions to Au(0) by the aldehyde moieties of the natural ESM fibers. Energy dispersive X-ray spectroscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, and X-ray powder diffraction unambiguously identify the presence of AuNPs on ESM. The effect of pH on the in situ synthesis of AuNPs on ESM has been investigated in detail. The pH of the gold precursor (HAuCl4) solution can influence the formation rate, dispersion and size of AuNPs on ESM. At pH ≤3.0 and ≥7.0, no AuNPs are observed on ESM while small AuNPs are homogeneously dispersed on ESM at pH 4.0-6.0. The optimal pH for AuNPs formation on ESM is 6.0. AuNPs/ESMs are used to immobilize glucose oxidase (GOx) for glucose biosensing. AuNPs on ESM can increase the enzyme activity of GOx. The linear response range of the glucose biosensor is 20 μM to 0.80 mM glucose with a detection limit of 17 μM (S/N = 3). The biosensor has been successfully applied to determine the glucose content in commercial glucose injections. Our work provides a very simple, non-toxic, convenient, and green route to synthesize AuNPs on ESM which is potentially useful in the biosensing field.  相似文献   

16.
The effects of NaBr on the adsorption of alkanediyl-bis-(dimethyl dodecyl- ammonium bromide) (referred to as C12-s-C12 2Br) at the air/water interface and on the micellization in the solution have been investigated by surface tension and fluorescence techniques. The results showed that the addition of NaBr greatly enhances their efficiency and effectiveness in surface tension reduction as well as the ability of micellization, even induces strong premicellar aggregation before the cmc. These were attributed to the unique molecular structure of gemini surfactant, where the flexible polymethylene chain was the spacer linking the two quaternary ammonium heads. By a short spacer, the charges of the two quaternary ammonium head groups are concentrated. Even for a long spacer (s = 12), since it is bent toward the alkyl tails, the similar effect is also produced. This results in the high sensitivity of their ionic head groups to salt. Besides, the addition of salt also effectively promotes the hydrophobic interaction between the alkyl tails of gemini surfactants. The addition of NaBr strongly promotes the adsorption of quaternary ammonium gemini surfactants C12-s-C12 2Br at the air/water interface and the micellization in the solution.  相似文献   

17.
Xu S  Tu G  Peng B  Han X 《Analytica chimica acta》2006,570(2):151-157
A novel strategy to construct a sensitive mediatorless sensor of H2O2 was described. At first, a cleaned gold electrode was immersed in thiol-functionalized poly(styrene-co-acrylic acid) (St-co-AA) nanosphere latex prepared by emulsifier-free emulsion polymerization St with AA and function with dithioglycol to assemble the nanospheres, then gold nanoparticles were chemisorbed onto the thiol groups and formed monolayers on the surface of poly(St-co-AA) nanospheres. Finally, horseradish peroxidase (HRP) was immobilized on the surface of the gold nanoparticles. The sensor displayed an excellent electrocatalytical response to reduction of H2O2 without the aid of an electron mediator. The biosensor showed a linear range of 8.0 μmol L−1–7.0 mmol L−1 with a detection limit of 4.0 μmol L−1. The biosensor retained more than 97.8% of its original activity after 60 days’ storage. Moreover, the studied biosensor exhibited good current reproducibility and good fabrication reproducibility.  相似文献   

18.
19.
In this work, a novel streptavidin functionalized graphene oxide/Au nanoparticles (streptavidin/GO/AuNPs) composite is prepared and for the first time used to construct sensitive chemiluminescent immunosensor for the detection of tumor marker. The streptavidin/GO/AuNPs composite and the immunosensor are characterized using scanning electron microscopy, static water contact angle measurement and electrochemical impedance spectroscopy. The biofunctionalized composite has large reactive surface area and excellent biocompatibility, thus the capture antibody can be efficiently immobilized on its surface based on the highly selective recognition of streptavidin to biotinylated antibody. Using α-fetoprotein (AFP) as a model, the proposed chemiluminescent immunosensor shows a wide linear range from 0.001 to 0.1 ng mL−1 with an extremely low detection limit down to 0.61 pg mL−1. The resulting AFP immunosensor shows high detection sensitivity, fast assay speed, acceptable detection and fabrication reproducibility, good specificity and stability. The assay results of serum samples with the proposed method are in an acceptable agreement with the reference values. This work provides a promising biofunctionalized nanostructure for sensitive biosensing applications.  相似文献   

20.
In this paper, we exploited a unique procedure for obtaining thorny gold nanoparticles (Au NPs) with controllable length of thorns without using seeds and surfactants. The obtained Au NPs exhibited shape-determined surface-enhanced Raman spectroscopy activity toward rhodamine 6G.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号