首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
A general formulation of the method of the reverberation-ray matrix (MRRM) based on the state space formalism and plane wave expansion technique is presented for the analysis of guided waves in multilayered piezoelectric structures. Each layer of the structure is made of an arbitrarily anisotropic piezoelectric material. Since the state equation of each layer is derived from the three-dimensional theory of linear piezoelectricity, all wave modes are included in the formulation. Within the framework of the MRRM, the phase relation is properly established by excluding exponentially growing functions, while the scattering relation is also appropriately set up by avoiding matrix inversion operation. Consequently, the present MRRM is unconditionally numerically stable and free from computational limitations to the total number of layers, the thickness of individual layers, and the frequency range. Numerical examples are given to illustrate the good performance of the proposed formulation for the analysis of the dispersion characteristic of waves in layered piezoelectric structures. Supported by the National Natural Science Foundation of China (Grant Nos. 10725210 and 10832009), the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20060335107), the National Basic Research Program of China (Grant No. 2009CB623204), and the Scientific Research Foundation for Tsuiying Talents of Lanzhou University  相似文献   

2.
An inhomogeneous layer element method is presented to analyze the dispersion of waves and characteristic wave surfaces in plates of functionally graded piezoelectric material (FGPM). In this method, the FGPM plate is divided into a number of layered elements. The elemental elastic and electric properties are assumed as linear functions of the thickness to adopt the variety of the material property of FGPM. The Hamilton principle is applied to determine the governing equations. The phase velocity surface, phase slowness surface, phase wave surface, group velocity surface, group slowness surface, and group wave surface for FGPM plate are formulated using Rayleigh quotient and the orthogonality condition of the eigenvectors. These six surfaces are then used to illustrate the characteristics of waves in FGPM plates. Numerical examples are presented using the present formulations to analyze dispersions and characteristics of waves in FGPM plates.  相似文献   

3.
Liu H  Kuang ZB  Cai ZM 《Ultrasonics》2003,41(5):397-405
Based on the theories of nonlinear continuum mechanics, piezoelectricity and elastic waves in solids, theoretical analysis of Bleustein-Gulyaev surface acoustic wave propagation in a prestressed layered piezoelectric structure are described. Numerical calculations are performed for the case that the layer and the substrate are identical LiNbO(3) except that they are polarized in opposite directions. It is found that an almost linear behavior of the relative change in phase velocity versus the initial stress is obtained for both surface electrically free and shorted cases. Potential applications in the design of acoustic wave devices are suggested.  相似文献   

4.
The relationships between the morphological characteristics and the vulnerability of atherosclerotic plaque were analyzed theoretically and several suggestions were proposed to evaluate the plaque vulnerability. Validated by animal experiments and clinical studies, the theoretical results were confirmed. Supported by the National Natural Science Foundation of China (Grant Nos. 10302016 and 60402023), the National Basic Research Program of China (973 Program)(Grant No. 2006CB503803), and the National Hi-Tech Research and Development Program of China (863 Program) (Grant No. 2007AA02Z448)  相似文献   

5.
In a homogeneous plate, Rayleigh waves will have a symmetric and anti-symmetric mode regarding to the mid-plane with different phase velocities. If plate properties vary along the thickness, or the plate is of functionally graded material (FGM), the symmetry of modes and frequency behavior will be modified, thus producing different features for engineering applications such as amplifying or reducing the velocity and deformation. This kind of effect can also be easily realized by utilizing a layered structure with desired material properties that can produce these effects in terms of velocity and displacements, since Rayleigh waves in a solid with general material property grading schemes are difficult to analyze with known methods. Solutions from layered structures with exponential and polynomial property grading schemes are obtained from the layered model and comparisons with known analytical results are made to validate the method and examine possible applications of such structures in engineering. Supported by the National Natural Science Foundation of China (Grant Nos. 10432030, 10125209, and 10572065) and the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions, Ministry of Education of China, and also supported by Qianjiang River Fellow Fund established by Zhejiang Provincial Government and Ningbo University and administered by Ningbo University, Zhejiang, China  相似文献   

6.
A numerical matrix method relative to the propagation of ultrasonic guided waves in functionally graded piezoelectric heterostructure is given in order to make a comparative study with the respective performances of analytical methods proposed in literature. The preliminary obtained results show a good agreement, however numerical approach has the advantage of conceptual simplicity and flexibility brought about by the stiffness matrix method. The propagation behaviour of Love waves in a functionally graded piezoelectric material (FGPM) is investigated in this article. It involves a thin FGPM layer bonded perfectly to an elastic substrate. The inhomogeneous FGPM heterostructure has been stratified along the depth direction, hence each state can be considered as homogeneous and the ordinary differential equation method is applied. The obtained solutions are used to study the effect of an exponential gradient applied to physical properties. Such numerical approach allows applying different gradient variation for mechanical and electrical properties. For this case, the obtained results reveal opposite effects. The dispersive curves and phase velocities of the Love wave propagation in the layered piezoelectric film are obtained for electrical open and short cases on the free surface, respectively. The effect of gradient coefficients on coupled electromechanical factor, on the stress fields, the electrical potential and the mechanical displacement are discussed, respectively. Illustration is achieved on the well known heterostructure PZT-5H/SiO2, the obtained results are especially useful in the design of high-performance acoustic surface devices and accurately prediction of the Love wave propagation behaviour.  相似文献   

7.
Two multiparty simultaneous quantum identity authentication (MSQIA) protocols based on secret sharing are presented. All the users can be authenticated by a trusted third party (TTP) simultaneously. In the first protocol, the TTP shares a random key K with all the users using quantum secret sharing. The ith share acts as the authentication key of the ith user. When it is necessary to perform MSQIA, the TTP generates a random number R secretly and sends a sequence of single photons encoded with K and R to all the users. According to his share, each user performs the corresponding unitary operations on the single photon sequence sequentially. At last, the TTP can judge whether the impersonator exists. The second protocol is a modified version with a circular structure. The two protocols can be efficiently used for MSQIA in a network. They are feasible with current technology. Supported by the National Basic Research Program of China (973 Program) (Grant No. 2007CB311100), the National High Technology Research and Development Program of China (Grant Nos. 2006AA01Z419 and 20060101Z4015), the Major Research Plan of the National Natural Science Foundation of China (Grant No. 90604023), the Scientific Research Common Program of Beijing Municipal Commission of Education (Grant No. KM200810005004), the Scientific Research Foundation for the Youth of Beijing University of Technology (Grant No. 97007016200701), the National Research Foundation for the Doctoral Program of Higher Education of China (Grant No. 20040013007), the National Laboratory for Modern Communications Science Foundation of China (Grant No. 9140C1101010601), and the Doctor Scientific Research Activation Foundation of Beijing University of Technology (Grant No. 52007016200702)  相似文献   

8.
This paper investigates the propagation behavior of Love-type surface waves in three-layered composite structure with initial stress. The composite structure has been taken in such a way that a functionally graded piezoelectric material (FGPM) layer is bonded between initially stressed piezoelectric upper layer and an elastic substrate. Using the method of separation of variables, frequency equation for the considered wave has been established in the form of determinant for electrical open and short cases on free surface. The bisection method iteration technique has been used to find the roots of the dispersion relations which give the modes for electrical open and short cases. The effects of gradient variation of material constant and initial stress on the phase velocity of surface waves are discussed. Dependence of thickness on each parameter of the study has been shown explicitly. Study has been also done to show the existence of cut-off frequency. Graphical representation has been done to exhibit the findings. The obtained results are significant for the investigation and characterization of Love-type waves in FGPM-layered media.  相似文献   

9.
A threshold quantum secret sharing (TQSS) scheme between multi-party and multi-party was proposed using a sequence of single photons, which is useful and efficient when the parties of communication are not all present. We described the process of this TQSS scheme and discussed its security. It was shown that entanglement is not necessary for quantum secret sharing. Moreover, the theoretic efficiency was improved to approach 100% as almost all the instances can be used for generating the private key, and each photon can carry one bit of information. This protocol is feasible with the present-day technique. Supported by the National Basic Research Program of China (973 Program)(Grant No. 2007CB311100), the National High-Technology Research and Development Program of China (Grant Nos. 2006AA01Z419 and 2006AA01Z440), the Major Research Plan of the National Natural Science Foundation of China (Grant No. 90604023), the Scientific Research Common Program of Beijing Municipal Commission of Education (Grant No. KM200810005004), the Scientific Research Foundation for the Youth of Beijing University of Technology (Grant No. 97007016200701), the Doctoral Scientific Research Activation Foundation of Beijing University of Technology (Grant No. 52007016200702), the ISN Open Foundation, and the National Laboratory for Modern Communications Science Foundation of China (Grant No. 9140C1101010601)  相似文献   

10.
This paper studies the problem of a functionally graded piezoelectric circular plate subjected to a uniform electric potential difference between the upper and lower surfaces. By assuming the generalized displacements in appropriate forms, five differential equations governing the generalized displacement functions are derived from the equilibrium equations. These displacement functions are then obtained in an explicit form, which still involve four undetermined integral constants, through a step-by-step integration which properly incorporates the boundary conditions at the upper and lower surfaces. The boundary conditions at the cylindrical surface are then used to determine the integral constants. Hence, three-dimensional analytical solutions for electrically loaded functionally graded piezoelectric circular plates with free or simply-supported edge are completely determined. These solutions can account for an arbitrary material variation along the thickness, and thus can be readily degenerated into those for a homogenous plate. A numerical example is finally given to show the validity of the analysis, and the effect of material inhomogeneity on the elastic and electric fields is discussed. Supported by the National Natural Science Foundation of China (Grant Nos. 10472102 and 10432030) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20060335107)  相似文献   

11.
Ambient noise data measured in an experiment conducted in shallow water near a sea-route were analyzed. It was observed that, at low frequency, the horizontal correlation has an obvious difference from that predicted by the classical ambient noise model. The theoretical analyses show that this phenomenon is caused by wind noise together with the discrete shipping noise nearby. An ambient noise model was proposed to include the effects caused by both the noise sources. Data measured at different times verify that the proposed model can be used to forecast the ambient noise field in shallow water near the sea-route. Supported by the National Natural Science Foundation of China (Grant No. 10734100), the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KZCX1-YW-12-2), the National Basic Research Program of China (Grant No. 2007CB209603), and the Open Foundation of China National Petroleum Corporation Key Laboratory (Grant No. GPKL0804)  相似文献   

12.
A threshold proxy quantum signature scheme with threshold shared verification is proposed. An original signer could authorize a group as its proxy signers. Then only t or more of n persons in the proxy group can generate the proxy signature on behalf of the original signer and any t − 1 or fewer ones cannot do that. When the proxy signature needs to be verified, any t or more of n persons belonging to the verification group can verify the message and any t − 1 or fewer ones cannot verify the validity of the proxy signature. Supported by the National Basic Research Program of China (973 Program)(Grant No. 2007CB311100), the National High-Technology Research and Development Program of China (Grant Nos. 2006AA01Z419 and 20060101Z4015), the Major Research Plan of the National Natural Science Foundation of China (Grant No. 90604023), the Scientific Research Common Program of Beijing Municipal Commission of Education (Grant No. KM200810005004), the Scientific Research Foundation for the Youth of Beijing University of Technology (Grant No. 97007016200701), the Doctoral Scientific Research Activation Foundation of Beijing University of Technology (Grant No. 52007016200702), and the National Laboratory for Modern Communications Science Foundation of China (Grant No. 9140C1101010601)  相似文献   

13.
An exact approach is used to investigate Rayleigh waves in a functionally graded piezoelectric material (FGPM) layer bonded to a semi infinite homogenous solid. The piezoelectric material is polarized when the six fold symmetry axis is put along the propagation direction x1. The FGPM character imposes that the material properties change gradually with the thickness of the layer. Contrary to the analytical approach, the adopted numerical methods, including the ordinary differential equation (ODE) and the stiffness matrix method (SMM), treat separately the electrical and mechanical gradients. The influences of graded variations applied to FGPM film coefficients on the dispersion curves of Rayleigh waves are discussed. The effects of gradient coefficients on electromechanical coupling factor, displacement fields, stress distributions and electrical potential, are reported. The obtained deviations in comparison with the ungraded homogenous film are plotted with respect to the dimensionless wavenumber. Opposite effects are observed on the coupling factor when graded variations are applied separately. A particular attention has been devoted to the maximum of the coupling factor and it dependence on the stratification rate and the gradient coefficient. This work provides with a theoretical foundation for the design and practical applications of SAW devices with high performance.  相似文献   

14.
Based on the potential flow theory, the vortex ring is introduced to simulate the toroidal bubble, and the boundary element method is applied to simulate the evolution of the bubble. Elastic-plasticity of structure being taken into account, the interaction between the bubble and the elastic-plastic structure is computed by combining the boundary element method (BEM) and the finite element method (FEM), and a corresponding 3D computing program is developed. This program is used to simulate the three-dimensional bubble dynamics in free field, near wall and near the elastic-plastic structure, and the numerical results are compared with the existing experimental results. The error is within 10%. The effects of different boundaries upon the bubble dynamics are presented by studying the bubble dynamics near different boundaries. Supported by the National Natural Science Foundation of China (Grant No. 50779007), the National Science Foundation for Young Scientists of China (Grant No. 50809018), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20070217074), the Defense Advanced Research Program of Science and Technology of Ship Industry (Grant No. 07J1.1.6), and Harbin Engineering University Foundation (Grant No. HEUFT07069)  相似文献   

15.
Love wave propagation in functionally graded piezoelectric material layer   总被引:1,自引:0,他引:1  
Du J  Jin X  Wang J  Xian K 《Ultrasonics》2007,46(1):13-22
An exact approach is used to investigate Love waves in functionally graded piezoelectric material (FGPM) layer bonded to a semi-infinite homogeneous solid. The piezoelectric material is polarized in z-axis direction and the material properties change gradually with the thickness of the layer. We here assume that all material properties of the piezoelectric layer have the same exponential function distribution along the x-axis direction. The analytical solutions of dispersion relations are obtained for electrically open or short circuit conditions. The effects of the gradient variation of material constants on the phase velocity, the group velocity, and the coupled electromechanical factor are discussed in detail. The displacement, electric potential, and stress distributions along thickness of the graded layer are calculated and plotted. Numerical examples indicate that appropriate gradient distributing of the material properties make Love waves to propagate along the surface of the piezoelectric layer, or a bigger electromechanical coupling factor can be obtained, which is in favor of acquiring a better performance in surface acoustic wave (SAW) devices.  相似文献   

16.
From the perspective of information theory and cryptography, the security of two quantum dialogue protocols and a bidirectional quantum secure direct communication (QSDC) protocol was analyzed, and it was pointed out that the transmitted information would be partly leaked out in them. That is, any eavesdropper can elicit some information about the secrets from the public annunciations of the legal users. This phenomenon should have been strictly forbidden in a quantum secure communication. In fact, this problem exists in quite a few recent proposals and, therefore, it deserves more research attention in the following related study. Supported by the National High Technology Research and Development Program of China (Grant No. 2006AA01Z419), the National Natural Science Foundation of China (Grant Nos. 90604023 and 60373059), the National Research Foundation for the Doctoral Program of Higher Education of China (Grant No. 20040013007), the National Laboratory for Modern Communications Science Foundation of China (Grant No. 9140C1101010601), the Natural Science Foundation of Beijing (Grant No. 4072020) and the ISN Open Foundation  相似文献   

17.
Signal structure of the Chinese Area Positioning System   总被引:8,自引:8,他引:0  
Proper signal structure is very important in the navigation, positioning, and time services of a satellite navigation system. In this paper, the carrier wave characteristics, ranging code functions, BOC modulation, navigation data rate, the error-correcting methods, and signal channel resource allocation are discussed in terms of the technical characteristics of the transforming satellite navigation system and the resources of communication satellites. The results show that dual-frequency of C band in the Chinese Area Positioning System (CAPS), compound ranging code, a combination of the coarse code and precise code, BOC modulation, separate-channel transmission of different users are compatible with the satellite navigation system at present. The experiments show that the current signal structure can meet the demand of CAPS. Supported by the Major Knowledge Innovation Programs of the Chinese Academy of Sciences (Grant No. KGCX1-21), the National High Technology Research and Development Program of China (Grant No. 2004AA105030), the National Natural Science Foundation of China (Grant No. 10453001), and the Major State Basic Research Development Program of China (Grant No. 2007CB815502)  相似文献   

18.
Using the finite-difference time-domain (FDTD) method, we simulate the coupling between a gold nanorod and gold nanoparticles with different plasmonic resonant frequencies/volumes as well as that between the nanorod and a dielectric nanosphere. The influences of coupling with different nanoparticles on the excitation of a forbidden longitudinal surface plasmon mode of the nanorod under normal incidence are investigated. It is found that the cause of this excitation is the broken symmetry of the local electric field experienced by the nanorod resulting from the charge pileup on the other nanoparticle. This result is valuable for understanding the near-field optical characterization of plasmonic metal nanoparticles. Supported by the National Natural Science Foundation of China (Grant Nos. 10821062 and 10804004), the National Basic Research Program of China (Grant No. 2007CB307001), and the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 200800011023) Contributed by GONG QiHuang  相似文献   

19.
尹亚玲  夏勇  印建平 《中国物理 B》2008,17(10):3672-3677
We propose a promising scheme to decelerate a CW molecular beam by using a red-detuned quasi-cw semi-Gaussian laser beam (SGB). We study the dynamical process of the deceleration for a CW deuterated ammonia (ND3) molecular beam by Monte-Carlo simulation method. Our study shows that we can obtain a ND3 molecular beam with a relative average kinetic energy loss of about 10% and a relative output molecular number of more than 90% by using a single quasi-cw SGB with a power of 1.5kW and a maximum optical well depth of 7.33mK.  相似文献   

20.
For the first time, a threshold quantum secure direct communication (TQSDC) scheme is presented. Similar to the classical Shamir's secret sharing scheme, the sender makes n shares, S1, …, Sn of secret key K and each receiver keeps a share secretly. If the sender wants to send a secret message M to the receivers, he en-codes the information of K and M on a single photon sequence and sends it to one of the receivers. According to the secret shares, the t receivers sequentially per-form the corresponding unitary operations on the single photon sequence and ob-tain the secret message M. The shared shares may be reusable if it can be judged that there is no eavesdropper in line. We discuss that our protocol is feasible with current technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号