共查询到20条相似文献,搜索用时 0 毫秒
1.
J. ClatotG. Campet A. ZeinertC. Labrugère A. Rougier 《Applied Surface Science》2011,257(12):5181-5184
Doped zinc oxide thin films are grown on glass substrate at room temperature under oxygen atmosphere, using pulsed laser deposition (PLD). O2 pressure below 1 Pa leads to conductive films. A careful characterization of the film stoichiometry and microstructure using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) concludes on a decrease in crystallinity with Al and Ga additions (≤3%). The progressive loss of the (0 0 2) orientation is associated with a variation of the c parameter value as a function of the film thickness and substrate nature. ZnO:Al and ZnO:Ga thin films show a high optical transmittance (>80%) with an increase in band gap from 3.27 eV (pure ZnO) to 3.88 eV and 3.61 eV for Al and Ga doping, respectively. Optical carrier concentration, optical mobility and optical resistivity are deduced from simulation of the optical data. 相似文献
2.
Sushant Gupta Purushottam KumarA. Arul Chakkaravathi Doina CraciunRajiv K. Singh 《Applied Surface Science》2011,257(13):5837-5843
Zinc oxide has become an important material for various applications. Commercially available zinc oxide single crystals and as-grown zinc oxide thin films have high surface roughness which has detrimental effects on the growth of subsequent layers and device performance. A chemical mechanical polishing (CMP) process was developed for the polishing of zinc oxide polycrystalline thin films. Highly smooth surfaces with RMS roughness <6 Å (as compared to the initial roughness of 26 ± 6 Å) were obtained under optimized conditions with removal rates as high as 670 Å/min. Effects of various CMP parameters on removal rate and surface roughness were evaluated. The role of pH on the polishing characteristics was investigated in detail. 相似文献
3.
Thin films of zinc oxide have been deposited by reactive pulsed laser ablation of Zn and ZnO targets in presence of a radio frequency (RF) generated oxygen plasma. The gaseous species have been deposited at several substrate temperatures, using the on-axis configuration, on Si (1 0 0). Thin films have been characterized by scanning electron microscopy, atomic force microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and infrared spectroscopy. A comparison among conventional PLD and reactive RF plasma-assisted PLD has been performed. 相似文献
4.
The influence of oxygen on the optical properties of RF-sputtered zinc oxide thin films 总被引:1,自引:0,他引:1
M. Gioffr M. Angeloni M. Gagliardi M. Iodice G. Coppola C. Aruta F.G. Della Corte 《Superlattices and Microstructures》2007,42(1-6):85
In this article, we investigate the effects of oxygen partial pressure in the deposition chamber on the optical properties of zinc oxide (ZnO) thin films; in particular, we examine the variation of the refractive index with oxygen flux.ZnO thin films were deposited by radio-frequency (RF) magnetron sputtering and studied by means of X-ray diffraction (XRD) and spectroscopic ellipsometry (SE). We have found a preferential c-axis growth of ZnO films, with slightly variable deposition rates from 2.6 to 3.8 Å/s. Conversely, the refractive index exhibits, from ultraviolet (UV) to near infrared (IR), a considerable and almost linear variation when the oxygen flux value in the deposition chamber varies from 0 to 10 sccm. 相似文献
5.
Shaun D. Gittard John R. Perfect Wei Wei Roger J. Narayan 《Applied Surface Science》2009,255(11):5806-5811
The electronic and chemical properties of semiconductor materials may be useful in preventing growth of microorganisms. In this article, in vitro methods for assessing microbial growth on semiconductor materials will be presented. The structural and biological properties of silicon wafers coated with zinc oxide thin films were evaluated using atomic force microscopy, X-ray photoelectron spectroscopy, and MTT viability assay. The antimicrobial properties of zinc oxide thin films were established using disk diffusion and CDC Biofilm Reactor studies. Our results suggest that zinc oxide and other semiconductor materials may play a leading role in providing antimicrobial functionality to the next-generation medical devices. 相似文献
6.
Nanostructured zinc oxide thin films were prepared by spray pyrolysis technique using Zn(NO3)2·6H2O as the precursor solution. The resulting films were investigated by X-ray diffraction and scanning electron microscopy to know crystal structure, size of crystallites and surface morphology. The films have been found to be polycrystalline zinc oxide, possessing hexagonal wurtzite crystal structure and nanocrystallite with grain size of approximately 30-35 nm. The LPG sensing performance of the films has been investigated at various concentrations of LPG in air at operating temperatures varying from 225 to 400 °C. At 325 °C the maximum responses of 46.3% and 48.9% have been observed, respectively, for concentrations of 0.8 and 1 vol% of LPG in air (1 vol% of LPG in air corresponds to 50% LEL of LPG in air). The recovery time has been found to be less than the response time for all concentrations of LPG. A possible reaction mechanism of LPG sensing has been proposed. 相似文献
7.
Hybrid film of zinc oxide (ZnO) and tetrasulfonated copper phthalocyanine (TSPcCu) was grown on an indium tin oxide (ITO) glass by one-step cathodic electrodeposition from aqueous mixtures of Zn(NO3)2, TSPcCu and KCl. The addition of TSPcCu strongly influences the morphology and crystallographic orientation of the ZnO. The nanosheets stack of ZnO leads to a porous surface structure which is advantageous to further adsorb organic dyes. The photovoltaic properties were investigated by assembling the DSSC device based on both the only ZnO film and the ZnO/TSPcCu hybrid films. Photoelectrochemical analysis revealed that the optimized DSSC device with TSPcCu represented a more than three-fold improvement in power conversion efficiency than the device without TSPcCu. The DSSC based on ZnO/TSPcCu hybrid films demonstrates an open circuit voltage of 0.308 V, a short circuit current of 90 μA cm−2, a fill factor of 0.26, and a power conversion efficiency of 0.14%. 相似文献
8.
(Pb0.5Ba0.5)ZrO3 (PBZ) and 1 mol% Mn-doped (Pb0.5Ba0.5)ZrO3 (Mn-PBZ) sol were successfully fabricated, and corresponding thin films were deposited on Pt(1 1 1)/TiO2/SiO2/Si(1 0 0) substrates by spin-coating method. Effects of Mn doping on the microstructure and electrical properties of PBZ thin films were investigated systemically. X-ray diffraction patterns showed that both films had a polycrystalline perovskite structure, and that the degree of (1 1 1) orientation were increased by Mn doping. Dielectric measurements illustrated that Mn-doped PBZ thin films not only had a larger dielectric constant, but also possessed a smaller dielectric loss. Accordingly, the tunability and the figure of merit of PBZ films were improved by Mn doping. 相似文献
9.
Nanostructured ZnO thin films with different concentrations of Ni2+ doping (0, 1, 5, 10 and 15 wt.%) are prepared by the sol-gel method for the first time. The thin films are prepared from zinc acetate, 2-methoxyethanol and monoethanolamine on glass substrates by using dip coating method. The films comprise of ZnO nanocrystallites with hexagonal crystal structure, as revealed by X-ray diffraction. The film surface is with characteristic ganglia-like structure as observed by Scanning Electron Microscopy. Furthermore, the Ni-doped films are tested with respect to the photocatalysis in aqueous solutions of malachite green upon UV-light illumination, visible light and in darkness. The initial concentration of malachite green and the amount of catalyst are varied during the experiments. It is found that increasing of the amount of Ni2+ ions with respect to ZnO generally lowers the photocatalytic activity in comparison with the pure ZnO films. Nevertheless, all films exhibit a substantial activity under both, UV and visible light and in darkness as well, which is promising for the development of new ZnO photocatalysts by the sol-gel method. 相似文献
10.
Zinc oxide (ZnO) thin films were deposited onto glass substrates by spin-coating method, from a precursor solution containing zinc acetate, ethanol and ammonium hydroxide. After deposition, the films were heated at a temperature of 100 °C in order to remove unwanted materials. Finally, the films were annealed at 500 °C for complete oxidation. X-ray diffraction showed that ZnO films were polycrystalline and have a hexagonal (wurtzite) structure. The crystallites are preferentially oriented with (0 0 2) planes parallel to the substrate surface. The films have a high transparency (more than 75%) in the spectral range from 450 nm to 1300 nm. The analysis of absorption spectra shows the direct nature of band-to-band transitions. The optical bandgap energy ranges between 3.15 eV and 3.25 eV.Some correlations between the processing parameters (spinning speed, temperature of post deposition heat treatment) and structure and optical characteristics of the respective thin films were established. 相似文献
11.
Thou-Jen Whang Mu-Tao HsiehJia-Ming Tsai Shyan-Jer Lee 《Applied Surface Science》2011,257(22):9539-9545
Compact and homogeneous c-axis preferred orientation of zinc oxide (ZnO) films on indium tin oxide (ITO) coated glass have been prepared electrochemically at −1.2 V vs. Ag|AgCl in a weak acidic condition from 0.06 M Zn(NO3)2 with 3 mM lactic acid (LA) added. LA was found having strong influence on the electrodeposition of c-axis preferred orientation of zinc oxide films. Other experimental variables such as deposition temperature, potential, and precursor concentration were also conducted in this article. Among these variables, it was found that precursor concentration of zinc nitrate influenced significantly on growth direction and crystal diameter of zinc oxide. Cyclic voltammetry was used to observe the electrochemistry of the deposition. Crystallinities of the films were examined by X-ray diffractometer. The morphologies of zinc oxide films were observed with a field emitting scanning electron microscope. Optical characteristics of zinc oxide layers were measured with UV-vis spectrophotometer. The band gap of the deposited zinc oxide thin films was evaluated from the Tauc relationship of (αhν)2 vs. hν, which was found to be 3.31 eV. 相似文献
12.
Improving the conductivity of diamond-like carbon films with zinc doping and its material properties
Zinc doped diamond-like carbon (DLC) nanocomposite thin films are fabricated by KrF pulsed laser deposition. Carbon targets containing 3.0, 5.0 and 10.0 atomic percentages of zinc are used as the source for the laser system. Investigation of electrical properties by the four-point probe shows that doping zinc into DLC can lower the electrical sheet resistivity. Microstructural analysis by Raman spectroscopy and XPS show a lower sp3 content but a higher SiC content with an increasing amount of zinc incorporation. The increase of SiC leads to an increase in adhesion strength. Surface roughness of the films also increases while the coefficients of friction for the films do not change. 相似文献
13.
Second harmonic generation (SHG) studies of fluorine-doped zinc oxide (ZnO:F) thin films deposited on soda-lime glass substrates from an aged solution in conjunction with zinc pentanedionate, using the chemical spray deposition technique were carried out. The and independent tensorial components of the quadratic nonlinear optical susceptibility of the ZnO:F thin films were evaluated. Scanning electron microscopy and X-ray diffraction investigations revealed a homogeneous distribution of nanoparticles of similar size and morphology for various samples deposited at different substrate temperatures (ranging from 400 to 525 °C). The SHG-technique revealed a clear dependence of the nonlinear optical response with the deposition temperature. Typical optical transmittance and photoluminescence (PL) studies were also performed, from which a bandgap (Eg) of 3.3 eV was evaluated in films deposited under optimal conditions of conductivity and transmittance. 相似文献
14.
The effect of ultraviolet (UV) light irradiation on the nanocrystalline ZnO thin films was investigated. The degree of crystallinity, electrical conductivity, optical properties and surface properties of ZnO thin films were measured as a function of UV irradiation time. It was found that the degree of crystallinity and electrical properties of ZnO films were affected by UV irradiation, however, no noticeable change in the surface morphology was observed. The gas sensing properties of as-deposited and UV irradiated films were also measured. It was observed that the gas sensing properties were affected by the UV irradiation. The irradiation time less than 5 min has improved the sensor while the irradiation time more than 5 min degraded the sensor characteristics for a UV power density of 2.45 W cm−2. 相似文献
15.
In this paper, the experimental results regarding some structural, electrical and optical properties of ZnO thin films prepared by thermal oxidation of metallic Zn thin films are presented.Zn thin films (d=200–400 nm) were deposited by thermal evaporation under vacuum, onto unheated glass substrates, using the quasi-closed volume technique. In order to obtain ZnO films, zinc-coated glass substrates were isochronally heated in air in the 300–660 K temperature range, for thermal oxidation.X-ray diffraction (XRD) studies revealed that the ZnO films obtained present a randomly oriented hexagonal nanocrystalline structure. Depending on the heating temperature of the Zn films, the optical transmittance of the ZnO films in the visible wavelength range varied from 85% to 95%. The optical band gap of the ZnO films was found to be about 3.2 eV. By in situ studying of the temperature dependence of the electrical conductivity during the oxidation process, the value of about 2×10−2 Ω−1 m−1 was found for the conductivity of completely oxidized ZnO films. 相似文献
16.
Yang YangTianxi Liu 《Applied Surface Science》2011,257(21):8950-8954
This work presented a hybrid architecture of graphene oxide (GO)/ZnO nanorods (ZNs) with ZNs attached parallel onto GO sheets. ZNs were synthesized by refluxing zinc acetate dehydrate in methanol solution under basic conditions followed by surface modification of 3-aminopropyl triethoxysilane (ATS), and then the preformed ZNs were attached onto GO sheets by reaction of the amino groups on the outer wall of ZNs with the carboxyl groups on the GO surface. Transmission electron microscopy (TEM) image of the as-prepared hybrid reveals the morphology of the architecture of GO/ZNs hybrid. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA) ultraviolet-visible (UV-vis) and fluorescence spectroscopy were also performed to characterize the structure and properties of the GO/ZNs hybrid. It was shown that ZNs maintained their initial morphology and crystallinity in the hybrid and the luminescence quenching of yellow-green emission of ZNs confirmed the electron transfer from excited ZnO to GO sheets. 相似文献
17.
Zinc oxide(ZnO) nanopowders doped with different metal ions(Me, Me = Sn4+, In3+, Mn2+, and Co2+) are prepared by a simple sol–gel method. Influences of the ion doping on morphology and optical properties of the resulting ZnxMeyO are investigated by scanning electron microscopy, X-ray diffraction, UV-vis absorption spectrum, and photoluminescence. The morphology of ZnO can be tailored by ion doping, which is closely related not only to the ionic radii and electronegativities of the doped ions, but also to their oxidation states and electron configurations. The optical band gap and photoluminescence of ZnO can also be modulated by ion doping, which results from a combination of different effects, Burstein–Moss, band tail, charge compensation, sp–d exchange, non-radiative recombination, and blocking barrier. This may offer us a viable approach to tuning the(optical) properties of ZnO-based materials via rational ion doping. 相似文献
18.
19.
20.
Jianlin Chen Ding Chen Jianjun He Shiying Zhang Zhenhua Chen 《Applied Surface Science》2009,255(23):9413-9419
Transparent conductive ZnO:Al–Sc (1:0.5, 1:1, 1:1.5 at.% Al–Sc) thin films were prepared on glass substrates by sol–gel method. The microstructure, optical, and electrical properties of ZnO:Sc and ZnO:Al–Sc films were investigated. Results show that Sc-doping alone obviously decreases grain size and degrades the crystallinity; there is an amorphous phase on the surface of ZnO grains; the transmittance spectra fluctuate dramatically with a large absorption valley at about 430–600 nm. However, Al–Sc co-doping can stabilize grain size and improve the microstructure; an average visible transmittance of above 73% is obtained with no large absorption valley; the amorphous phase does not appear. The optical band gaps of ZnO:Sc and ZnO:Al–Sc films (3.30–3.32 eV) are blue-shifted relative to pure ZnO film (3.30 eV). Hall effects show that the lowest resistivity of 2.941 × 10−2 Ω cm and the maximum Hall mobility of 24.04 cm2/V s are obtained for ZnO:Al–Sc films while ZnO:Sc films do not exhibit any electrical conductivity. Moreover, there is an optimum atomic ratio with Al to Sc of 1:0.5–1 at.%. Although the resistivities are increased compared with that of ZnO:Al film, the Hall mobilities are raised by one order of magnitude. 相似文献