首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polycrystalline noble metal films are commonly used in practical applications across a variety of different fields. However, the surface electronic structure of the noble metals has primarily only been studied on single crystal substrates. In addition, sputter cleaned polycrystalline noble metal films are commonly used substrates in ultraviolet photoelectron spectroscopy (UPS) studies, but have yet to be systematically studied in terms of their photoemission anisotropy. The angle-dependence of the valence band spectra of sputter cleaned polycrystalline Au, Ag and Cu were studied using angle-resolved UPS. It is found that the photoemission is anisotropic with respect to photoelectron take-off angle. The results for Ag and Cu are in good agreement with previous reports of surface d-band narrowing in polycrystalline noble metal films. However, significant anisotropies in the d-band, s-band and Fermi edge of sputter cleaned Au are observed, which cannot be attributed to surface d-band narrowing alone. The unusual results for Au are attributed to drastic changes in the film morphology near the surface as a result of sputter cleaning.  相似文献   

2.
Recently electron cyclotron resonance (ECR) plasma have been explored for wafer cleaning applications, since it is known to do less damage to silicon surface than conventional plasma. Organic contaminants removal efficiency and plasma radiation damage of the ECR plasma cleaning have been investigated. In oxygen ECR plasma cleaning, the plasma exposure time needed to remove the organic contaminants on the silicon surface down to the detection limit is 40 s, but the one to reach the lowest surface roughness is 10 s. The leakage current level of the MOS capacitor made using the Si substrate exposed to oxygen ECR plasma for 40 s is 8 × 10−9 A. The optimum exposure time determined by considering the contaminants removal efficiency and the plasma radiation damage (or the leakage current level) is 40 s. Organic contaminants seem to be removed through both sputter-off mechanism by oxygen ion bombardment and evaporation mechanism by chemical reactions with excited oxygen atoms.  相似文献   

3.
For application to floating nanodots gate memory, ferritin core, ferrihydrite nanodot, array was made and reduced to be conductive. Ammonia plasma treatment was employed to reduce the ferrihydrite cores. X-ray photoelectron spectroscopy analysis confirmed that the plasma treated cores embedded in a SiN film are successfully reduced from ferrihydrite to metal iron. It was elucidated that hydrogen radicals or ions in the plasma combine with oxygen atoms in the core and, consequently, the core is reduced to a conductive state. Transmission electron microscope analysis before and after the treatment showed that the reduced core size was smaller than ferrihydrite core by approximately 2 nm, which is consistent with theoretical calculation of the shrink size accompanying core reduction to α-Fe. The plasma treated cores embedded in SiO2 film are found to be iron oxides, which indicates that the metal iron nanodots are vulnerable to oxygen and easy to be reoxidized.  相似文献   

4.
Limited volume electrodes have been used to examine the processes of hydrogen electrosorption by Pd–Pt–Rh alloys under conditions of cyclic voltammetric (CV) experiments. Hydrogen adsorption and hydrogen absorption signals well separated from surface oxides generation and oxides reduction currents are seen on CV curves recorded in the full potential range. The possibility is demonstrated of simultaneous investigations of bulk processes of hydrogen insertion/removal and surface processes of carbon oxides adsorption. Due to different adsorption characteristics towards CO2 exhibited by the alloy components hydrogen adsorption and hydrogen absorption signals can be distinguished. Adsorbed CO2 causes partial blocking of hydrogen adsorbed on Pt and Rh surface atoms. The presence of adsorbed CO2 on the electrode surface does not influence significantly hydrogen insertion into the alloy. CO adsorption results in a strong inhibition of hydrogen adsorption. Hydrogen insertion into the bulk is not totally blocked but proceeds much slower than in the absence of CO adsorbates.  相似文献   

5.
Interfacial adhesion between an indium tin oxide (ITO)/Ni/Ag/Ni/Au p-electrode, and Au and Ni/Au seeds in vertical GaN-based light emitting diodes (LEDs) was enhanced by O2 plasma cleaning treatment of the Au surface in the p-electrode. However, AES and REELS analyses of the Au surface in the p-electrode detected surface damage to the p-electrode and photoresist (PR) passivation structure from O2 plasma cleaning. W/Ni and Al/Ni adhesion layers were introduced in the Au seed to increase interfacial adhesion between Au seed and untreated PR passivation. Forward leakage current as low as 0.91 nA at 2 V was observed for the vertical LED with the Al/Ni/Au seed, for which adhesion strength to O2 plasma-cleaned Au and untreated PR was 141.2 MPa and 62.8 MPa, respectively.  相似文献   

6.
采用HPM溶液(盐酸、双氧水和去离子水的混合液)结合氧等离子体对多层介质膜脉宽压缩光栅进行清洗研究。用X射线光电子能谱检测光栅表面的元素成分及其原子含量的变化。实验结果表明,氧等离子体处理能有效去除光栅表面残留光刻胶和碳氟化合物; 再经HPM溶液清洗,反应离子束刻蚀和氧等离子体处理过程产生的金属污染物被进一步去除。经过上述清洗工艺处理后,光栅一级衍射效率仍保持在95%以上,光栅表面激光诱导损伤阈值达到1.6 J/cm2 (1053 nm, 10 ps)。实验结果说明了氧等离子体和HPM溶液相结合能有效清洗多层介质膜脉宽压缩光栅,并显著提高光栅损伤阈值。  相似文献   

7.
Author index     
The catalytic activity of the substoichiometric tungsten trioxide electrodes for the oxidation of hydrogen has been investigated, using simultaneous EPR spectroscopy and linear-sweep voltammetry measurements. The parameters of the EPR spectral line observed for all oxides except stoichiometric WO3 were determined in relation to the electronic structure of the paramagnetic centers associated with the oxygen anion vacancies. Hydrogen adsorption was followed by means of changes both in the EPR line parameters and in the electrode potential. The intensity-versus-potential curves for suboxide electrodes under hydrogen were analyzed in terms of the occurrence of two processes. It was shown that one process is associated with the hydrogen oxidation and that the other is connected with oxidation of the WO3?x surface. The mechanisms of both reactions were interpreted as involving the formation and oxidation of an hydrogen tungsten bronze.  相似文献   

8.
《Physics letters. A》2020,384(3):126079
Nowadays, the plasmonic properties of defective transition metal oxides, have attracted great attention in the sensing and catalyst applications. The aim of this paper is to fabricate plasmonic Au-MoOx nanoparticles (NPs) using a facile anodizing in liquid approach to be used as localized surface plasmon resonance (LSPR) hydrogen sensor. Firstly, dark blue MoOx nanosheets with a strong NIR (700–800 nm) LSPR band were obtained. The Au-MoOx NPs (Au size=5–7 nm) were then obtained by adding a gold cation into the blue MoOx liquid base. Thanks to the catalytic properties of Au NP, this system exhibited LSPR hydrogen sensing ability where the LSPR variations allowed us to detect hydrogen in the 0–3% concentration range with a good linearity and possible many data points.  相似文献   

9.
The thermodynamics properties of noble metal clusters AuN, AgN, CuN, and PtN (N = 80, 106, 140, 180, 216, 256, 312, 360, 408, 500, 628, 736, and 864) are simulated by micro-canonical molecular dynamics simulation technique. The potential energy and heat capacities change with temperature are obtained. The results reveal that the phase transition temperature of big noble metal clusters (N ⩾ 312 for Au, 180 for Ag and Cu, and 360 for Pt) increases linearly with the atom number slowly and approaches gently to bulk crystals. This phenomenon indicates that clusters are intermediate between single atoms and molecules and bulk crystals. But for the small noble clusters, the phase transition temperature changes irregularly with the atom number due to surface effect. All noble metal clusters have negative heat capacity around the solid-liquid phase transition temperature, and hysteresis in the melting/freezing circle is derived in noble metal clusters.  相似文献   

10.
The thermodynamics properties of noble metal clusters AuN, AgN, CuN, and PtN (N = 80, 106, 140, 180, 216, 256, 312, 360, 408, 500, 628, 736, and 864) are simulated by micro-canonical molecular dynamics simulation technique. The potential energy and heat capacities change with temperature are obtained. The results reveal that the phase transition temperature of big noble metal clusters (N ? 312 for Au, 180 for Ag and Cu, and 360 for Pt) increases linearly with the atom number slowly and approaches gently to bulk crystals. This phenomenon indicates that clusters are intermediate between single atoms and molecules and bulk crystals. But for the small noble clusters, the phase transition temperature changes irregularly with the atom number due to surface effect. All noble metal clusters have negative heat capacity around the solid-liquid phase transition temperature, and hysteresis in the melting/freezing circle is derived in noble metal clusters.  相似文献   

11.
Cleaning of the silicon surface before Co film deposition is a key procedure in the synthesis of silicide (CoSi2) and, hence, in the production of the metal-semiconductor contact. This study deals with a new method of surface cleaning using arc plasma jet treatment (APJT) at atmospheric pressure. The results show that cleaning of the Si surface using APJT (Ar/CCIF3) improves the Schottky barrier contact parameters in comparison with conventional wet HF final cleaning and additional cleaning using in situ Ar-ion-beam sputter etching. Moreover, substantially longer time of wafer exposure to air between final cleaning and metal deposition is acceptable. Auger electron spectroscopy shows that APJT removes oxygen from the Si surface.  相似文献   

12.
The apparently puzzling observations in the superconducting behavior of palladium—noble metal—hydrogen (deuterium) systems, viz., the occurrence of higherT c and a monotonic increase inT c for Au, Ag and Cu systems; the absence of the H(D) induced opposite isotope effect; the existence of an optimum noble metal content, different for different alloy systems, beyond which superconductivity ceases; and the existence of an optimum hydrogen content, different for different alloys, giving the highestT c , have been accounted for by taking due cognition of the electronic and the crystallographic behavior of these alloys and their role in superconductivity, the participation of H(D)-optic phonons, in conjunction with anharmonicity, in BCS-type pairing interaction and the manifestations of the metallurgical and thermodynamical properties of these alloys in superconductivity.  相似文献   

13.
A method to create various well-ordered two dimensional transition metal oxide films on a metallic substrate has been exploited. The formation of an intermediate amorphous layer with controllable metal-oxygen stoichiometry serves as an important precursor condition for the final transformation into a mono-phase, crystalline oxide layer via mild annealing. As a key ingredient serves a Cu3Au(1 0 0) substrate covered by oxygen. The flat Cu-O topmost layer stops completely intermixing of the substrate material with the subsequently evaporated transition metal film. Likewise the wetting of the surface is considerably enhanced and a homogeneous oxidation of the film is strongly promoted. The proposed technique appears to be widely efficient for preparation of various two dimensional oxide films covering the entire Cu3Au(1 0 0) substrate. Its usefulness is demonstrated successfully for vanadium, niobium and molybdenum to produce a set of single-phase transition metal oxides of different stoichiometry and geometrical structure. All created oxides are found to be thermally stable at least up to a substrate temperature of 800 K.  相似文献   

14.
丁皓  申承民  惠超  徐梽川  李晨  田园  时雪钊  高鸿钧 《中国物理 B》2010,19(6):66102-066102
Monodisperse Au-Fe 3 O 4 heterodimeric nanoparticles (NPs) were prepared by injecting precursors into a hot reaction solution.The size of Au and Fe 3 O 4 particles can be controlled by changing the injection temperature.UV-Vis spectra show that the surface plasma resonance band of Au-Fe 3 O 4 heterodimeric NPs was evidently red-shifted compared with the resonance band of Au NPs of similar size.The as-prepared heterodimeric Au-Fe 3 O 4 NPs exhibited superparamagnetic properties at room temperature.The Ag-Fe 3 O 4 heterodimeric NPs were also prepared by this synthetic method simply using AgNO 3 as precursor instead of HAuCl 4.It is indicated that the reported method can be readily extended to the synthesis of other noble metal conjugated heterodimeric NPs.  相似文献   

15.
Potential applications as transparent conducting oxides have made the study of ternary metal oxides based on the delafossite structure very attractive. The well known and understood thermal instability of noble metal oxides, and therefore the associated problems with high-temperature solid-state techniques to yield pure complex oxides based on noble metals, clearly illustrates the need for low-temperature alternatives. For the first time, synthesis of 3R-AgInO2 at low temperature (175 °C) and pressure (<10 atm) was achieved by a single-step hydrothermal technique. Particle size of the orange crystallites ranged from 3 to 7 μm.  相似文献   

16.
The photoelectrochemical response to the electromagnetic radiation over the visible range is particularly sought for from the point of view of the efficiency of hydrogen generation by water photolysis in a photoelectrochemical solar cell, PEC. The PEC used in this work comprises thin film TiO2 - based photoanode, Pt foil covered with Pt black as a cathode and SCE as a reference electrode, immersed in an electrolyte solution. Titanium dioxide thin films are deposited by means of rf reactive sputtering and modified, when necessary, by Au or Ag ultra-thin overcoatings. Here we show that even unmodified TiO2 photoanode, shows a photocurrent peak over the visible range of the light spectrum (λ = 500-650 nm). The effect of the surface modification by noble metals and properties of the aqueous electrolyte on the visible photocurrent are studied. The optical spectra indicate an increased absorption due to noble metal deposits at 410 nm for Ag and at 600 nm for Au. In contrast, the photocurrent peak over the visible range (500 nm < λ < 650 nm) changes its symmetry and decreases in intensity with the increasing thickness of noble metals layers. The visible photoresponse is explained in terms of OH formation at the interface between TiO2 electrode and aqueous electrolyte.  相似文献   

17.
The effect of low pressure radio frequency (rf) plasma treatment on TiO2 surface states has been studied using X-ray photoelectron spectroscopy. Three different oxidation states of oxygen in untreated TiO2 powder were observed, which suggests the existence of adsorbed water and carbon on the surface. The ratio of oxygen to titanium (O/Ti) was decreased for the low ion dose plasma treated samples due to desorption of water from the surface. In the case of Ti 2p about 20% of surface states were converted to Ti3+ 2p3/2 state after plasma treatment with a very good stability, whereas untreated TiO2 remained mostly as Ti4+ state. A rapid decrease in the ratio of carbon to titanium (C/Ti) at TiO2 surface was also observed after plasma treatment and more than 90% of carbon atoms were removed from the surface. Therefore, the plasma treatment of TiO2 has advantages to surface carbon cleaning, increasing O and Ti3+ surface states, hence improving the activity of TiO2 for different environmental, energy and biological applications.  相似文献   

18.
The dispersion relation of surface plasma oscillations of the Au-vacuum interface was determined from the light emission of AlAl2O3Au tunnel diodes. The comparison of results with previous data obtained on Ag indicate that the mechanism of light generation is qualitatively the same for all MOM structures if the anode is one of the noble metals.  相似文献   

19.
The effect of oxygen plasma treatment on the performance of GaN Schottky barrier diodes is studied. The GaN surface is intentionally exposed to oxygen plasma generated in an inductively coupled plasma etching system before Schottky metal deposition. The reverse leakage current of the treated diodes is suppressed in low bias range with enhanced diode ideality factor and series resistance. However, in high bias range the treated diodes exhibit higher reverse leakage current and corresponding lower breakdown voltage. The X-ray photoelectron spectroscopy analysis reveals the growth of a thin GaOx layer on GaN surface during oxygen plasma treatment. Under sub-bandgap light illumination, the plasma-treated diodes show larger photovoltaic response compared with that of untreated diodes, suggesting that additional defect states at GaN surface are induced by the oxygen plasma treatment.  相似文献   

20.
采用真空蒸镀法在硅片表面形成了一层具有表面增强拉曼活性的金岛膜.拉曼光谱发现该金岛膜表面存在非晶态碳的污染物.通过比较不同清洗方法的拉曼光谱可以证明,用氧气等离子体清洗金岛膜可有效去除金表面的杂质.金岛膜的表面增强拉曼活性在清洗前后没有发生明显变化.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号