首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Poly(methyl metacrylate)/montmorillonite (PMMA)/(MMT) nanocomposites were prepared by in-situ solution polymerization of methyl methacrylate monomer in the presence of the organic modified MMT-clay. After the organic modification by ionic exchanging with amine salts, the organoclay becomes more hydrophobic and compatible then pristine clay with methyl methacrylate monomer. The modified clays are characterized by wide angle X-ray diffraction (WAXRD). The powdered X-ray diffraction and transmission electron microscopy (TEM) techniques were employed to study the morphology of the PMMA/clay nanocomposites which indicate that the modified clays are dispersed in PMMA matrix to form both exfoliated and intercalated PMMA/modified clay nanocomposites. The thermo-mechanical properties were measured by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC). Gas permeability analyzer (GPA) shows the excellent gas barrier property of the PMMA nanocomposites which is in good agreement with the morphology. The optical property was measured by UV-vis spectroscopy which shows that these materials have good optical clarity, and UV resistance.  相似文献   

2.
To obviate the brittleness and improve the mechanical properties of poly(tetrahydrofurfuryl methacrylate) (PTHFMA), clay mineral nano-composites of PTHFMA with two different montmorillonites (MMT), Cloisite® 20A and Cloisite® 30B, were prepared. The mechanical properties were investigated by dynamic mechanical analysis (DMA) and nanoindentation. The thermal properties of the nano-composites were studied using thermogravimetric analysis (TGA). According to the DMA results, tanδ was increased by addition of the clay, leading to the improvement in the mechanical properties which was also confirmed by the nanoindentation results. TGA thermograms showed better thermal stability for the nano-composites compared to that of the homopolymer. Considering all results, the clay mineral polymer nano-composites (CPN) with Cloisite® 20A exhibited better properties compared to those with Cloisite® 30B. Transmission electron microscopy (TEM) micrographs, and X-ray diffraction (XRD) patterns validated intercalation-exfoliation of the clay mineral layers for the Cloisite 20A and intercalation of the Cloisite 30B in the polymer matrix.  相似文献   

3.
Abstract

Poly(ethylene glycol‐co‐cyclohexane‐1,4‐dimethanol terephthalate)(PETG)/clay nanocomposites were prepared via melt intercalation technique. The effects of concentration of the organic modifier in the clay on the properties of the nanocomposites were studied. Three clays modified using the same alkyl ammonium modifier, but differing in modifier concentration, are used for this purpose. The nanocomposites are characterized using wide‐angle x‐ray diffraction for their structure. Dynamic mechanical analysis of these nanocomposites is also studied to investigate their viscoelastic behaviors. The x‐ray diffraction study shows an increase in the interlayer spacing of organically modified clays as compared to that of Na+ clay. The extent of increase in the interlayer spacing is dependent on the concentration of organic modifier used to modify the montmorillonite. The presence of well‐defined diffraction peaks and the observed increase in the interlayer spacing in the nanocomposites imply the formation of an intercalated hybrid. Dynamic mechanical properties show an increase in the storage modulus of the nanocomposite over the entire temperature range studied, as compared to the pristine polymer. Investigation of the rubbery plateau modulus confirms the reinforcing effect of organically modified clay. The observed enhancement in the modulus was greater for the clay with the lowest content of the organic modifier. These results indicate that in nanocomposites, apart from the compatibility of the organic modifier with the polymer, its concentration in the interlayer also plays a critical role in the structure development and thus in the enhancement of the properties. The nanocomposites showed reduced damping, which was governed by the modifier concentration in the clay.  相似文献   

4.
Halloysite nanotube (HNT) clay and biodegradable polylactic acid (PLA) nanocomposites were fabricated by a melt-blending method with five different clay levels (1, 3, 5, 7, and 9 wt%). The effect of HNT loading on the thermal and mechanical properties of the PLA/HNT nanocomposites was examined by thermogravimetric analysis and universal tensile testing, respectively. Morphological characteristics were investigated by transmission electron microscopy. The composites' melt rheological characteristic analyses were conducted using a rotational rheometer in both steady-shear and oscillatory dynamic testing modes. The data were found to be well-analyzed using the Carreau model, Cox–Merz rule, modified Cole–Cole plot, and van Gurp–Palmen plot.  相似文献   

5.
This work focuses on the chemical modification of montmorillonite (MMT) (Cloisite® Na) with compatible silanes, vinyltriethoxysilane (CVTES) and γ-methacryloxypropyltrimethoxysilane (CMPS) in order to prevent agglomeration and to improve montmorillonite interaction with an unsaturated polyester resin matrix seeking to achieve a multifunctional composite. Clays were dispersed in the resin by mechanical stirring and sonication and the nanocomposites were prepared by resin transfer into a mold. The mechanical, morphological, thermal and flammability properties of the obtained composites were compared with those prepared using commercial Cloisite® 30B (C30B) and Cloisite® 15A (C15A) clays. Advantages of using silane-modified clays (CVTES and CMPS) as compared with organic-modified clays (C30B and C15A) can be summarized as similar flexural strength and linear burning rate but higher storage modulus and improved adhesion to the polyester resin with consequent higher thermal deflection temperature and reinforcement effectiveness at higher temperatures. However, organic modified clays showed better dispersion (tendency to exfoliate) and consequently delayed thermal volatilization due to the clay barrier effect.  相似文献   

6.
Vikas Mittal 《哲学杂志》2013,93(36):4498-4517
The resistance of modification molecules bound to montmorillonite platelet surfaces towards structural damage at high temperature is a major parameter guiding the formation of optimal interface between the filler and polymer phases in a nanocomposite material. As nanocomposites are generated by melt-blending of modified mineral and polymer, it is necessary to quantify the thermal resistance of the filler surface modification at the compounding conditions because different modifications differ in chain length, chemical structure, chain density, and thermal performance. A number of different alkyl ammonium modifications were exchanged on the montmorillonites with cation exchange capacities in the range 680–900?µequiv.?g?1 and their thermal behaviour was characterised using high resolution thermogravimetric analysis. Quantitative comparisons between different modified minerals were achieved by comparing temperature at 10% weight loss as well peak degradation temperature. Various factors affecting thermal stability, such as length and density (or number) of alkyl chains in the modification, presence of excess modification molecules on the filler surface, the chemical structure of the surface modifications, etc. were studied. The TGA findings were also correlated with X-ray diffraction of the modified platelets.  相似文献   

7.
《Composite Interfaces》2013,20(8-9):787-803
Poly(amide)-6/clay nanocomposites are investigated by means of modulated temperature differential scanning calorimetry. The importance of polymer–filler interaction is explored by comparing nanocomposites based on untreated and organically modified clay. During quasi-isothermal crystallization experiments, an excess contribution is observed in the recorded heat capacity signal due to reversible melting and crystallization. The magnitude of this excess contribution depends on the nanocomposite investigated. We suggest that it is directly related to the segmental mobility of the polymer chains in the interphase region. As such, the magnitude of this excess contribution can be used to quantify the efficiency of the polymer–clay interaction. Depending on the clay type used, differences in interfacial interaction can be achieved, which is of great importance with respect to the improvement of material properties. Based on thermal analysis results, a simple interphase model is proposed that is able to account for both the thermal and mechanical properties of poly(amide)-6/clay nanocomposites.  相似文献   

8.
The morphology and composition of organic montmorillonites are critical for their dispersion in polymer matrixes. In the current study, the pristine montmorillonite (MMT) was first surface modified with silane and then intercalated using two kinds of intercalating agents in supercritical carbon dioxide (scCO2). The obtained OMMTs with tunable morphology and composition, together with pristine MMT and commercial MMT, were introduced into poly(butylene terephthalate) (PBT) to investigate the MMTs dispersion in the PBT matrix and the final properties of the PBT/MMT nanocomposites. The structure of the different MMTs and their dispersion in the PBT matrix were characterized by SEM and TEM, respectively. The crystallization behavior, storage moduli and loss factors of the PBT/MMT nanocomposites were also investigated.  相似文献   

9.
In this work, a polypropylene (PP)/attapulgite nanocomposite was prepared via melt blending using a novel organically modified attapulgite (OATP). The thermal stability of PP/clay nanocomposites compared to pure PP was examined in nitrogen using a kinetic analysis. The kinetic parameters, including reaction order and activation energy (A and E a) of the degradation process were determined by applying the Flynn‐Wall‐Ozawa method using derivative thermogravimetric (DTG) curves. At the same time, the effect of organic attapulgite on thermal decomposition of polypropylene matrix was analyzed. As a result, PP/OATP nanocomposites have slightly higher degradation temperature than that of the pure PP. The values of the reaction order of PP and PP/OATP nanocomposites are close to 1 in the nonisothermal degradation process. The activation energies of PP/OATP nanocomposites also increase slightly compared to the pure PP, thus it is suggested that the org‐attapulgite has little effect on the thermal stability of the pure PP.  相似文献   

10.
A new method of silane treatment of nanoclays is reported where in the clay is nanodispersed in hydrolyzed silanes. The surface functionalization of Cloisite® 15A nanoclay has been carried out using two different silane coupling agents: 3-aminopropyltriethoxy silane and 3-glycidyloxypropyltrimethoxy silane using varied amounts of silane coupling agents, e.g. 10, 50, 200, and 400 wt% of clay. The surface modification of Cloisite® 15A has been confirmed by Fourier transform infrared spectroscopy. The modified clays were then dispersed in epoxy resin, and glass fiber-reinforced epoxy clay laminates were manufactured using vacuum bagging technique. The fiber-reinforced epoxy clay nanocomposites containing silane modified clays have been characterized using small angle X-ray scattering, transmission electron spectroscopy and differential scanning calorimetry. The results indicate that the silane treatment of nanoclay aided the exfoliation of nanoclay and also led to an increase in mechanical properties. The optimized amount of silane coupling agents was 200 wt%. The nanocomposites containing clay modified in 200 wt% of silanes exhibited an exfoliated morphology, improved tensile strength, flexural modulus, and flexural strength. The improved interfacial bonding between silane modified nanoclays and epoxy matrix was also evident from significant increase in elongation at break.  相似文献   

11.
《Composite Interfaces》2013,20(2-3):237-247
Polystyrene/layered silicates nanocomposites were prepared by intercalation in solution method, using CHCl3 and CCl4 as solvents. The clay used was organically modified by hexadecyltrimethyl–ammonium bromide (CTAB) at various surfactant loadings. It was found that intercalated nanocomposite structure was obtained using CHCl3 as solvent while exfoliated or partially exfoliated was the predominant form in the case of CCl4. X-ray diffraction and thermogravimetric analysis were used to characterize the nanocomposite morphology and thermal stability, respectively. Enhancement in thermal stability was observed for PS-nanocomposites compared to that of pristine polymer as indicated by TGA measurements. This increment was more prevalent for exfoliated nanocomposites prepared with carbon tetrachloride as solvent.  相似文献   

12.
Miniemulsion polymerization was used as the synthetic method to produce clay/poly(methyl methacrylate) nanocomposites. Two kinds of interfacial interactions clay–polymer particle were observed by electron microscopy, one where the polymer particles are adhered on the surface of the larger fragments of clay, and another where nanometric fragments of clay are encapsulated by polymer particles. Variations in the glass transition temperature (Tg) and thermomechanical properties of the matrix, as function of clay content, were observed. In particular, at the highest clay loading (1.0 wt%) depression of Tg and thermomechanical properties were observed. The increased clay–polymer matrix interfacial area appears to be the conditioning factor that determines such behavior.  相似文献   

13.
The properties of polymer matrix composites are related not only to the chemical composition of the materials but also to the processing equipment used for their preparation which has a direct influence on the microstructure of the composites. In this paper polypropylene (PP)/multi-walled carbon nanotubes (MWCNTs) nanocomposites were prepared by melt blending through a self-developed, eccentric rotor extruder (ERE). The structure and elongational deformation mechanism of an ERE were described in detail. The morphological, rheological, thermal and mechanical properties of the resulting PP/MWCNTs nanocomposites were investigated. Scanning electron microscopy (SEM) and rheological analysis showed that the MWCNTs were well dispersed in the PP matrix. The thermal stability was investigated by thermogravimetric analysis (TGA) and indicated that the addition of MWCNTs could effectively improve the thermal stability of pure PP. The percentage of crystallinity and tensile strength of the composites were improved as a result of the heterogeneous nucleation effect of the MWCNTs in the PP matrix. The research results revealed that the enhancement of the properties of PP/MWCNTs composites could be attributed to a better dispersion of the MWCNTs in the matrix as compared to samples prepared by conventional extrusion.  相似文献   

14.
Conducting polymer composites of polypyrrole (PPy) and silver doped nickel oxide (Ag-NiO) nanocomposites were synthesised by in situ polymerisation of pyrrole with different contents of Ag-NiO nanoparticles. The formation of nanocomposites were studied by Fourier transform infrared (FTIR) and UV–vis spectroscopy, field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and AC and DC conductivity measurements. The sensitivity of ammonia gas through the nanocomposite was analysed with respect to different contents of nanoparticles. Spectroscopic studies showed the shift in the absorption bands of polymer nanocomposite than that of pure PPy indicating the strong interaction between the nanoparticles and polymer chain. FESEM revealed the uniform dispersion of nanoparticles with spherically shaped metal oxide particles in PPy matrix. The XRD pattern indicated a decrease in amorphous domain of PPy with increase in loading of nanoparticles. The higher thermal stability and glass transition temperature of polymer nanocomposites than that of pure PPy were revealed from the TGA and DSC respectively. The dielectric properties, DC and AC conductivity of nanocomposites were much higher than PPy and these electrical properties increases with the loading of nanoparticles. The nanocomposites showed an enhancement in sensitivity towards ammonia gas detection than PPy.  相似文献   

15.
Abstract

Butyl rubber (IIR)/hydrophobically modified graphene oxide (GO) (HG) nanocomposites were prepared via shear-induced compounding. Hydrophilic GO was synthesized through the chemical oxidation of graphite (GP) and modified hydrophobically by octadecylamine which has a hydrophobic long alkyl chain. The obtained HG was characterized by Fourier transform infrared and wide-angle X-ray diffraction (WAXD) patterns. It was well dispersed in toluene for more than 30 days under stationary condition. The IIR/HG nanocomposites were prepared by the shear mixing process and followed by thermal vulcanization process through compression molding. Their properties were studied using oscillating disk rheometer, universal testing machine, differential scanning calorimetry, thermogravimetric analysis, WAXD patterns, and scanning electron microscope analysis. The hydrophobic HG was dispersed at the nanoscale within IIR matrix, and the resulting nanocomposites had significantly reduced curing time. The overall tensile properties were enhanced.  相似文献   

16.
《Composite Interfaces》2013,20(2-3):131-144
A series of poly(butylene succinate) (PBS) nanocomposites with the organoclay C12PPh-Mica were synthesized by using the in-situ interlayer polycondensation of 1,4-butanediol with succinic acid. The PBS nanocomposites were melt-spun to produce monofilaments with various organoclay contents and draw ratios (DRs). The thermo-mechanical properties and morphologies of the PBS nanocomposites were determined using differential scanning calorimetry, thermogravimetric analysis, wide angle X-ray diffraction, transmission electron microscopy, and a universal tensile machine. Some of the clay particles were found to be well dispersed in the PBS matrix, with some agglomerated at a size level greater than approximately 20 nm. The thermal degradation properties of undrawn PBS hybrid fibers were found to improve with increasing clay content. The ultimate tensile strengths and initial moduli of the hybrid fibers increased with increasing clay content at DR = 1. However, the ultimate strengths were found to decrease markedly with increases in DR from 1 to 6. In contrast to the trend for the tensile strengths, the initial moduli of the hybrid fibers increased only slightly with increases in DR up to 6.  相似文献   

17.
《Ultrasonics sonochemistry》2014,21(4):1557-1569
Ultrasound technology was proved as an efficient processing technique to obtain micro-molded specimens of polylactide (PLA) and polybutylene succinate (PBS), which were selected as examples of biodegradable polyesters widely employed in commodity and specialty applications. Operational parameters such as amplitude, molding force and processing time were successfully optimized to prepare samples with a decrease in the number average molecular weight lower than 6%.Ultrasonic waves also seemed an ideal energy source to provide effective disaggregation of clay silicate layers, and therefore exfoliated nanocomposites. X-ray diffraction patterns of nanocomposites prepared by direct micro-molding of PLA or PBS powder mixtures with natural montmorillonite or different organo-modified clays showed the disappearance of the 0 0 1 silicate reflection for specimens having up to 6 wt.% clay content. All electron micrographs revealed relatively homogeneous dispersion and sheet nanostructures oriented in the direction of the melt flow.Incorporation of clay particles during processing had practically no influence on PLA characteristics but enhanced PBS degradation when an organo-modifier was employed. This was in agreement with thermal stability data deduced from thermogravimetric analysis. Cold crystallization experiments directly performed on micro-molded PLA specimens pointed to a complex influence of clay particles reflected by the increase or decrease of the overall non-isothermal crystallization rate when compared to the neat polymer. In all cases, the addition of clay led to a clear decrease in the Avrami exponent.  相似文献   

18.
Three surfactants, with the same long alkyl tail but varying in functional groups, were selected to modify two pristine clays with different cation exchange capacities (CEC). Each of the modified clays was melt-mixed with polypropylene (PP) to prepare nanocomposites. The microstructure of the resultant nanocomposites was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and rheological techniques. The results showed that the surfactant structure had remarkable effects on the morphology and shear rheology of the nanocomposites based on the high-CEC organoclay: use of benzyl functional groups led to the highest extent of intercalation and highest enhancement of shear properties, while use of 2-hydroxyethyl groups had the opposite effect. Nanocomposites based on low-CEC organoclay all exhibited poor dispersion and their shear behavior was changed only slightly in comparison to the polymer matrix. In the case of extensional rheology, strain hardening was observed only in the two nanocomposites containing surfactants with 2-hydroxyethyl groups, regardless of the dispersion state of the nanoparticles.  相似文献   

19.
《Composite Interfaces》2013,20(5-7):663-675
The thermal behaviour, fire resistance and mechanical properties of jute-reinforced composites with vinylester and resol matrix were studied. Organically modified clay was added to the polymeric matrix in order to enhance the properties of the composites. An inhomogeneous distribution of the nanoreinforcement in the polymer was observed by X-ray diffraction. Thermogravimetric analyses revealed that the addition of clay to the resol resin by sonication enhanced the thermal resistance of the jute-reinforced composite at temperatures higher than 300°C. The fire resistance of the composites was evaluated by means of a cone calorimeter. A diminution in the peak of the heat release rate was observed when clay was added to the polymeric matrix. On the other hand, neither the time to ignition nor the total heat evolved was significantly reduced by the clay addition. Additionally, an increment in the flexural modulus as well as in the flexural strength of the resol composites was observed when the clay was added to the matrix. The fiber–matrix interface of the composites was studied by scanning electron microscopy. It was observed that as the clay dispersion degree was increased the interface quality was diminished in the resol composites.  相似文献   

20.
《Composite Interfaces》2013,20(8-9):831-852
Melt blending of maleic anhydride-grafted polypropylene (PPgMA) and organically modified clay nanocomposites was first carried out in a plasticorder. The structure was investigated with x-ray diffraction (XRD) and transmission electron microscopy (TEM). The interfacial interaction between PB3150 compatibilizer and I30 clay surface was altered with the addition of different loadings of PB3150. It was found at the PB3150 compatiblizer gave rise to a high degree of clay dispersion beyond the PB3150/I30 weight ratio of 3. We then also modified polypropylene/organoclay nanocomposites with different loadings of PB3150 on a twin-screw extruder. When the PB3150 loading exceeded 15 wt%, extensive exfoliation of clay was observed. The relative complex viscosity curves also revealed a systematic trend with the extent of exfoliation and showed promise for quantifying the hybrid structure of the nanocomposites. Mechanical properties and thermal stability were determined by tensile and impact tests and thermogravimeric analysis (TGA), respectively. Although high loading of PB3150 leads to better clay dispersion in the polypropylene nanocomposites, it causes deterioration in both mechanical and thermal properties of the hybrid systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号