首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 770 毫秒
1.
An Y  Cooper JW  Balgley BM  Lee CS 《Electrophoresis》2006,27(18):3599-3608
Besides the complexity in protein samples of biological origin, probably the greatest challenge presently facing comprehensive proteome analysis is related to the large variation of protein relative abundances (>6 orders of magnitude), having potential biological significance in mammalian systems. As demonstrated in this work, transient capillary ITP/zone electrophoresis (CITP/CZE) provides selective analyte enrichment through electrokinetic stacking and extremely high resolving power toward protein and peptide mixtures. The result of the CITP process is that major components may be diluted, but trace compounds are concentrated. The on-column transition of CITP to CZE minimizes additional band broadening while providing superior analyte resolution. Online coupling of transient CITP/CZE with nano-ESI-MS allows ultrasensitive detection of trace peptides at levels of subnanomolar concentration or subfemtomole mass in complex peptide mixtures. More importantly, selective enrichment of trace peptides enables the identification and sequence analysis of low-abundance peptides co-migrated with highly abundant species at a concentration ratio of 1:500,000. The combined CITP/CZE-nano-ESI-MS system is demonstrated to be at least one to two orders of magnitude more sensitive than that attained in conventional electrophoretic and chromatographic-based proteome technologies over a wide dynamic concentration range, potentially allowing comprehensive analysis of protein profiles within a small cell population and limited tissue samples using conventional mass spectrometers. Furthermore, the speed of CITP/CZE separation and the lack of column equilibration in CITP/CZE not only improve the throughput of proteome analysis, but also facilitate its seamless integration with other separation technologies in a multidimensional protein identification platform.  相似文献   

2.
A mixture of ten proteins was trypsinized and injected onto poly-(styrene-divinylben-zene) monolithic columns (60 x 0.20 or 0.10 mm ID) and a column packed with C18 silica particles (75 x 0.075 mm ID), respectively. The columns were eluted at 200-2000 nL/min with gradients of ACN in 0.050% TFA. Eluting peptides were detected by ESI-MS/MS and subsequently identified by database searching. The 100 microm ID monolithic column showed the highest cumulative Mowse scores based on the highest ion scores for the peptides and the largest number of identified peptides. It is shown that the number of identified peptides strongly depends on the dynamic range within the peptide mixture. In consequence, all proteins were identified in a mixture of relatively balanced analyte amounts (12.5-80 fmol) whereas only peptides for six out of ten proteins were found in a sample of high-dynamic range (0.65-270 fmol). The 100 microm monolithic column showed the highest reproducibility for peptide identifications in three consecutive runs. Depending on sample amount, 57-72% of the identified peptides were detectable in each of the three runs of triplicate analyses. The results demonstrate the high suitability of 100 microm monolithic columns for high-resolution peptide separations in proteomic research.  相似文献   

3.
A high organic content CE-MS/MS (HOCE-MS/MS) method was developed for the proteomic analysis of envelope proteins extracted from spinach leaves. Separation was performed in a 1-m long hydroxypropyl cellulose coated capillary, using 8% (v/v) formic acid in 70% (v/v) methanol and 22% water as the BGE. A flow-through microvial interface was used to couple the CE system with an Orbitrap Fusion Lumos mass spectrometer, and field-amplified sample stacking was used to improve the concentration sensitivity. Using this optimized method, 3579 peptides and 1141 proteins were identified using the Proteome Discoverer software with a 1% false discovery rate at the protein level. Relative to conventional aqueous CE, HOCE-MS did a better job of discovering hydrophobic peptides and provided more peptide and protein identifications. Relative to nano-LC-MS, it achieved comparable peptide and protein identification performance and detected peptides not identified by LC-MS: of the full set of peptides identified using the two techniques, 19% were identified only using HOCE-MS. It also outperformed nano-LC-MS with respect to the detection of low molecular weight peptides.  相似文献   

4.
The extent and effects of sequence scrambling in peptide ions during tandem mass spectrometry (MS/MS) have been examined using tryptic peptides from model proteins. Sequencescrambled b ions appeared in about 35% of 43 tryptic peptides examined under MS/MS conditions. In general, these ions had relatively low abundances with averages of 8% and 16%, depending on the instrumentation used. A few tryptic peptides gave abundant scrambled b ions in MS/MS. However, peptide and protein identifications under proteomic conditions with Mascot were not affected, even for these peptides wherein scrambling was prominent. From the 43 tryptic peptides that have been investigated, the conclusion is that sequence scrambling is unlikely to impact negatively on the accuracy of automated peptide and protein identifications in proteomics.  相似文献   

5.
The development of novel proteomic technologies that will enable the discovery of disease specific biomarkers is essential in the clinical setting to facilitate early diagnosis and increase survivability rates. We are reporting a shotgun two-dimensional (2D) strong cationic exchange/reversed-phase liquid chromatography/electrospray ionization tandem mass spectrometry (SCX/RPLC/ESI-MS/MS) protocol for the analysis of proteomic constituents in cancerous cells. The MCF7 breast cancer cell line was chosen as a model system. A series of optimization steps were performed to improve the LC/MS experimental setup, sample preparation, data acquisition and database search protocols, and a data filtering strategy was developed to enable confident identification of a large number of proteins and potential biomarkers. This research has resulted in the identification of >2000 proteins using multiple filtering and p-value sorting. Approximately 1600-1900 proteins had p < 0.001, and, of these, approximately 60% were matched by >or=2 unique peptides. Alternatively, >99% of the proteins identified by >or=2 unique peptides had p < 0.001. When searching the data against a reversed database of proteins, the rate of false positive identifications was 0.1% at the peptide level and 0.4% at the protein level. The typical reproducibility in detecting overlapping proteins across replicate runs exceeded 90% for proteins matched by >or=2 unique peptides. According to their biological function, approximately 200 proteins were involved in cancer-relevant cellular processes, and over 25 proteins were previously described in the literature as putative cancer biomarkers, as they were found to be differentially expressed between normal and cancerous cell states. Among these, biomarkers such PCNA, cathepsin D, E-cadherin, 14-3-3-sigma, antigen Ki-67, TP53RK, and calreticulin were identified. These data were generated by subjecting to MS analysis approximately 42 microg of sample, analyzing 16 SCX peptide fractions, and interpreting approximately 55,000 MS2 spectra. Total MS time required for analysis was 40 h.  相似文献   

6.
The availability of robust and highly efficient separation methods represents a major requirement for proteome analysis. This study investigated the characteristics of two different gel-free proteomic approaches to the fractionation of proteolytic peptides and intact proteins, respectively, in a first separation dimension. Separation and mass spectrometric detection by matrix-assisted laser desorption/ionization tandem mass spectrometry (MALDI-MS/MS) were performed at the peptide level in both methods. Bottom-up analysis (BU) was carried out employing well established peptide fractionation in the first separation dimension by strong cation-exchange chromatography (SCX), followed by ion-pair reversed-phase chromatography (IP-RPC) in the second dimension. In the semi-top-down approach (STD), which involved intact protein fractionation in the first dimension, the separation mode in both dimensions was IP-RPC utilizing monolithic columns. Application of the two approaches to the proteome analysis of proteins extracted from a tumor tissue revealed that the BU method identified more proteins (1245 in BU versus 920 in STD) while STD analysis offered higher sequence coverage (14.8% in BU versus 17.5% in STD on average). The identification of more basic and larger proteins was slightly favored in the BU approach, most probably due to higher losses of these proteins during intact protein handling and separation in the STD method. A significant degree of complementarity was revealed by an approximately 33% overlap between one BU and STD replicate, while 33% each of the protein identifications were unique to both methods. In the STD method, peptides obtained upon digestion of the proteins contained in fractions of the first separation dimension covered a broad elution window in the second-dimension separation, which demonstrates a high degree of “pseudo-orthogonality” of protein and peptide separation by IP-RPC in both separation dimensions.  相似文献   

7.
An assessment of fractionated mouse hippocampal peptides was conducted. Protein extract from a single mouse hippocampus was enzymatically digested and fractionated by IEF. Aliquots of fractions were pooled into fewer, more complex samples. The unfractionated lysate, fractions, and pooled fractions were subjected to LC‐MS/MS analysis. Samples consisting of many individual fractions had more protein identifications, greater protein sequence coverage, and quantified proteins with more spectral counts than protein extract that was unfractionated or pooled into fewer LC‐MS/MS samples. Additionally, prefractionation reduced the median CV for spectral counts as much as 33%. However, the relative gain in proteome resolution was found to saturate with increasing fractionation extent. This study demonstrates how prefractionation by offline IEF can improve the resolution of proteomic investigations of the mouse hippocampus, and that a data‐driven pooling methodology can reduce excessive and cost‐ineffective fractionation.  相似文献   

8.
Qscore: An algorithm for evaluating SEQUEST database search results   总被引:12,自引:0,他引:12  
A scoring procedure is described for measuring the quality of the results for protein identifications obtained from spectral matching of MS/MS data using the Sequest database search program. The scoring system is essentially probabilistic and operates by estimating the probability that a protein identification has come about by chance. The probability is based on the number of identified peptides from the protein, the total number of identified peptides, and the fraction of distinct tryptic peptides from the database that are present in the identified protein. The score is not strictly a probability, as it also incorporates information about the quality of the individual peptide matches. The result of using Qscore on a large test set of data was similar to that achieved using approaches that validate individual spectral matches, with only a narrow overlap in scores between identified proteins and false positive matches. In direct comparison with a published method of evaluating Sequest results, Qscore was able to identify an equivalent number of proteins without any identifiable false positive assignments. Qscore greatly reduces the number of Sequest protein identifications that have to be validated manually.  相似文献   

9.
The use of electron-transfer dissociation as an alternative peptide ion activation method for generation of protein sequence information is examined here in comparison with the conventional method of choice, collisionally activated dissociation, using a linear ion trapping instrument. Direct comparability between collisionally and electron-transfer-activated product ion data were ensured by employing an activation-switching method during acquisition, sequentially activating precisely the same precursor ion species with each fragmentation method in turn. Sequest (Thermo Fisher Scientific, San Jose, CA) searching of product ion data generated an overlapping yet distinct pool of polypeptide identifications from the products of collisional and electron-transfer-mediated activation products. To provide a highly confident set of protein recognitions, identification data were filtered using parameters that achieved a peptide false discovery rate of 1%, with two or more independent peptide assignments required for each protein. The use of electron transfer dissociation (ETD) has allowed us to identify additional peptides where the quality of product ion data generated by collisionally activated dissociation (CAD) was insufficient to infer peptide sequence. Thus, a combined ETD/CAD approach leads to the recognition of more peptides and proteins than are achieved using peptide analysis by CAD- or ETD-based tandem mass spectrometry alone.  相似文献   

10.
王灼维  彭福利  王媛  童维  任艳  徐宁志  刘斯奇 《色谱》2010,28(2):115-122
膜蛋白质在变性剂作用下能够较充分地溶解。根据这一特点,我们试图在变性剂溶液中采用串联离子交换色谱法分离小鼠肝脏膜蛋白质。将小鼠肝脏膜蛋白质溶解于含有4 mol/L尿素,20 mmol/L三羟甲基氨基甲烷(Tris)-盐酸缓冲液(pH 9.0)中,用Q-Sepharose FF和Sephacryl S-200HR树脂组成的色谱柱结合大部分溶解的膜蛋白质,然后采用氯化钠线性梯度洗脱蛋白质,分步收集后采用十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)进一步分离洗脱组分的蛋白质。利用胶内胰蛋白酶消化技术将SDS-PAGE胶内分离的蛋白质降解为相应的肽段,然后以反相高效液相色谱分离和离子阱质谱仪鉴定肽段。根据文献报道和蛋白质的功能分类,在所鉴定的392个蛋白质中有306个可能为膜蛋白质或膜结合蛋白质。蛋白质的疏水性计算表明,GRAVY(grand average of hydropathicity)得分大于或等于0.00的蛋白质有83个。综上所述,我们有理由认为本实验方法基本符合小鼠肝脏膜蛋白质组学研究的要求。  相似文献   

11.
Yu Y  Liu M  Yan G  He Y  Xu C  Shen H  Yang P 《Talanta》2011,85(2):1001-1006
The extreme complexity of protein samples is becoming a great challenge for proteomic analysis, especially for those having large dynamic range of protein abundance. To solve this problem, and to overcome the limitation of the current proteomic technologies, a new method using hydrazide-functionalized magnetic microspheres was established in this study. With this method, tryptophan (Trp)-containing peptides can be selectively and sensitively enriched from complex and low-volume samples. Furthermore, combined with 1D-LC-MS/MS analysis, the strategy was successfully applied to the proteomic study of mouse serum. The proportion of Trp-containing peptides was increased from 19.4% to 80.2% through enrichment, and the complexity of the sample was reduced more than two times. An additional 113 Trp-containing peptides and 48 novel proteins were detected compared to the conventional method. This enrichment method provides a means for identifying more proteins as potential biomarkers in serum and other complex samples.  相似文献   

12.
《Electrophoresis》2017,38(3-4):401-407
Four methods were compared for analysis of host‐cell protein (HCP) impurities in a recombinant mAb. First, CZE‐MS/MS was used to analyze the digest of an HCP sample following extraction of the mAb with proteins A and L affinity columns; 220 protein groups and 976 peptides were identified from the depleted HCP digest. Second, a nanoACQUITY UltraPerformance LCH system was also used to analyze the depleted HCP digest; 34 protein groups and 53 peptides from 50 ng of the depleted HCP digest and 290 protein groups and 1011 peptides were identified from 1 μg of the depleted HCP digest. Third, 185 protein groups and 709 peptides were identified by CZE‐MS/MS from the HCP digest without depletion. Fourth, a strong cation exchange SPE was coupled to CZE‐ESI‐MS/MS using online pH gradient elution for analysis of the HCP digest without depletion. A series of five pH bumps were applied to elute peptides from the strong cation exchange monolith followed by analysis using CZE coupled to a Q Exactive HF mass spectrometer; 230 protein groups and 796 peptides were identified from the HCP digest without depletion.  相似文献   

13.
生物样本中的蛋白质复杂程度很高,尚无一种分析方法能够全面分析复杂生物样本中的所有蛋白质。实验证明:重复的质谱分析能增加蛋白质的鉴定数量,但鉴定到的蛋白质冗余度很高,高丰度肽段被反复检出。为了降低鉴定冗余度,提高鉴定效率,对线性离子阱-傅立叶变换离子回旋共振质谱仪的串联质谱采集方法进行了研究,建立了基于母离子排除的串联质谱采集方法。此方法能极大降低二级质谱采集的冗余度,提高蛋白质的鉴定效率。  相似文献   

14.
The fluorescent sensitive SYPRO Red dye was successfully employed to stain proteins in two-dimensional gels for protein identification by peptide mass fingerprinting. Proteins which are not chemically modified during the SYPRO Red staining process are well digested enzymatically in the gel and hence the resulting peptides can be efficiently eluted and analysed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). A SYPRO Red two-dimensional gel of a complex protein extract from Candida albicans was analysed by MALDI-TOF MS. The validity of SYPRO Red staining was demonstrated by identifying, via peptide mass fingerprinting, 10 different C. albicans proteins from a total of 31 selected protein spots. The peptide mass signal intensity, the number of matched peptides and the percentage of coverage of protein sequences from SYPRO Red-stained proteins were similar to or greater than those obtained in parallel with the modified silver protein gel staining. This work demonstrates that fluorescent SYPRO Red staining is compatible with the identification of proteins separated on polyacrylamide gel and that it can be used as an alternative to silver staining. As far as we know, this is the first report in which C. albicans proteins separated using 2-D gels have been identified by peptide mass fingerprinting. The improved technique described here should be very useful for carrying out proteomic studies.  相似文献   

15.
This investigation describes the separation of tryptic peptides by capillary reversed-phase high-performance liquid chromatography (RP-HPLC) with eluents in the intermediate pH range, followed by in-line electrospray ionisation tandem mass spectrometry (ESI-MS/MS) analysis. For these purposes, gradient elution procedures with an aqueous eluent containing 20 mM ammonium formate, and an increasing content of acetonitrile or methanol, were employed. Compared to the analysis of the same tryptic peptides under low-pH conditions with an ion-pairing reagent, the increase in the pH with the 20 mM ammonium formate mobile phase led to significant changes in both peptide retention to the reversed-phase column and the collision-induced dissociation at the MS/MS stage as a consequence of the changes in the physico-chemical properties of these peptides, such as their overall charge, polarity and relative hydrophobicity. Thus, improved selectivity for the peptide separation and favourable tandem mass spectrometry analysis could be obtained with eluents in this intermediate pH range. The number of tryptic peptides identified by the new approach for the proteins investigated were significantly higher than that obtained by the conventional low-pH methods. Moreover, analysis of protein digests at very low concentrations was also performed under both acidic and intermediate pH conditions and similar improvements in selectivity and MS/MS detection limits were observed, i.e. identification of more distinct peptides and higher sequence coverage of the protein was obtained when eluents of intermediate pH were employed. This study therefore highlights the potential of conducting peptide mapping in the intermediate pH range to achieve more reliable and sensitive protein identifications with capillary RP-HPLC–ESI-MS/MS.  相似文献   

16.
A high‐speed DNA fragment separation system based on an on‐line combination of capillary ITP with CZE (CITP‐CZE) and using UV detection at 260 nm was developed. A novel CITP‐CZE buffer system of pH 6.1 was designed for the separation of ten DNA fragments with sizes ranging from 100 to 1000 bp. An effect of underivatized α‐, β‐ and γ‐cyclodextrins on the resolution of DNA fragments in the CZE step of the CITP‐CZE combination was systematically investigated. Methylhydroxyethylcellulose present in the BGE was used to eliminate the EOF. DNA ladder fragments were separated within 10 min with LODs in the range of 1–5 ng/μL (S/N = 3). The RSDs of the migration time and peak area of individual DNA fragments were in the range of 1–3 and 3–9%, respectively. The developed CITP‐CZE system was further applied to the analysis of digest plasmid DNA samples.  相似文献   

17.
A method for rapid characterization of recombinant and modified proteins with known sequences is described. The analytical system consists of a capillary zone electrophoresis (CZE) instrument coupled to an electrospray ionization ion trap tandem mass spectrometer via a sheath-flow interface. Following the procedure consists of proteolytic fragmentation, CZE peptide separation, tandem mass spectrometry (MS-MS) analysis of separated peptides, sequence database search and monitoring of the specific peptides, C 125 S mutated interleukin 2 (S-125-IL2) and bovine beta-casein were characterized as a model of recombinant protein and naturally modified protein, respectively. A tryptic peptide mixture derived from the synthetic salmon calcitonin (s-CT) was also analyzed to test the performance of the system. Although a conventional sheath-flow interface with much higher flow-rate compared to the microspray interface and nanospray interface was used, the proteins were identified at the low picomole level.  相似文献   

18.
2-DE combined with LC-MS/MS has become a routine, reliable protein separation and identification technology for proteome analysis. The demand for large-scale protein identifications after 2-DE separation requires a sensitive and high-throughput LC-MS/MS method. In this report, a simple, splitless, fully automated capillary LC-MS/MS system was described for the large-scale identification of proteins from gels stained with either silver or CBB. The gel samples were digested and peptides were extracted using an in-gel digestion workstation. The peptides were automatically introduced into a capillary column by an autosampler connected to an HPLC pump. A nanoLC pump was then used to deliver the gradient and elute the peptides from the capillary column directly into an LCQ IT mass spectrometer. Neither a peptide trapping setting nor a flow split is needed in this simple setup. The collected MS/MS spectra were then automatically searched by SEQUEST, and filtered and organized by DTASelect. Hundreds of silver-stained or CBB-stained Shewanella oneidensis, Geobacter sulfurreducens, and Geobacter metallireducens proteins separated by denaturing or nondenaturing 2-DE were digested and routinely analyzed using this fully automated muLC-MS/MS system. High peptide hits and sequence coverage were achieved for most CBB-stained gel spots. About 75% of the spots were found to contain multiple proteins. Although silver staining is not commonly thought to be optimal for MS analysis, protein identifications were successfully obtained from silver-stained 2-DE spots detected using methods with and without formaldehyde for protein fixation.  相似文献   

19.
mAbs are highly complex proteins that present a wide range of microheterogeneity that requires multiple analytical methods for full structure assessment and quality control. As a consequence, the characterization of mAbs on different levels is particularly product‐ and time‐consuming. CE‐MS couplings, especially to MALDI, appear really attractive methods for the characterization of biological samples. In this work, we report the last instrumental development and performance of the first totally automated off‐line CE‐UV/MALDI‐MS/MS. This interface is based on the removal of the original UV cell of the CE apparatus, modification of the spotting device geometry, and creation of an integrated delivery matrix system. The performance of the method was evaluated with separation of five intact proteins and a tryptic digest mixture of nine proteins. Intact protein application shows the acquisition of electropherograms with high resolution and high repeatability. In the peptide mapping approach, a total number of 154 unique identified peptides were characterized using MS/MS spectra corresponding to average sequence coverage of 64.1%. Comparison with NanoLC/MALDI‐MS/MS showed complementarity at the peptide level with an increase of 42% when using CE/MALDI‐MS coupling. Finally, this work represents the first analysis of intact mAb charge variants by CZE using an MS detection. Moreover, using a peptide mapping approach CE‐UV/MALDI‐MS/MS fragmentation allowed 100% sequence coverage of the light chain and 92% of the heavy chain, and the separation of four major glycosylated peptides and their structural characterization.  相似文献   

20.
Fractionation of complex samples at the cellular, subcellular, protein, or peptide level is an indispensable strategy to improve the sensitivity in mass spectrometry-based proteomic profiling. This study revisits, evaluates, and compares the most common gel-based protein separation techniques i.e. 1D SDS-PAGE, 1D preparative SDS-PAGE, IEF-IPG, and 2D-PAGE in their performance as fractionation approaches in nano LC-ESI-MS/MS analysis of a mixture of protein standards and mitochondrial extracts isolated from rat liver. This work demonstrates that all the above techniques provide complementary protein identification results, but 1D SDS-PAGE and IEF-IPG had the highest number of identifications. The IEF-IPG technique resulted in the highest average number of detected peptides per protein. The 2D-PAGE was evaluated as a protein fractionation approach. This work shows that the recovery of proteins and resulting proteolytic digests is highly dependent on the total volume of the gel matrix. The performed comparison of the fractionation techniques demonstrates the potential of a combination of orthogonal 1D SDS-PAGE and IEF-IPG for the improved sensitivity of profiling without significant decrease in throughput.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号