首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Light propagation in one-dimensional nonlinear waveguide arrays with self-defocusing intensity-resonant nonlinearity is investigated theoretically. We study thoroughly conditions for existence and stability of both gap and discrete dark solitons. According to the linear stability analysis both fundamental types (on-site and intersite) of gap solitons may be stable. Discrete dark solitons are unstable except in the low-power regime and, depending on system parameters, evolve into either gray solitons, breathers, or background radiation. Mobility of these solitons is analyzed by the free energy concept: gap solitons are immobile but dark solitons can be easily set in motion.  相似文献   

2.
Sukhorukov AA  Kivshar Y 《Optics letters》2002,27(23):2112-2114
We suggest a novel concept of diffraction management in waveguide arrays and predict the existence of discrete gap solitons that possess the properties of both conventional discrete and Bragg grating solitons. We demonstrate that one can control both the soliton velocity and the propagation direction by varying the input light intensity.  相似文献   

3.
We analyze discrete surface modes in semi-infinite binary waveguide arrays, which can support simultaneously two types of discrete solitons. We demonstrate that the analysis of linear surface states in such arrays provides important information about the existence of nonlinear surface modes and their properties. We find numerically the families of both discrete surface solitons and nonlinear Tamm (gap) states and study their stability properties.  相似文献   

4.
The study of wave propagation in periodic systems is at the frontiers of physics, from fluids to condensed matter physics, and from photonic crystals to Bose-Einstein condensates. In optics, a typical example of periodic system is a closely-spaced waveguide array, in which collective behavior of wave propagation exhibits many intriguing phenomena that have no counterpart in homogeneous media. Even in a linear waveguide array, the diffraction property of a light beam changes due to evanescent coupling between nearby waveguide sites, leading to normal and anomalous discrete diffraction. In a nonlinear waveguide array, a balance between diffraction and self-action gives rise to novel localized states such as spatial “discrete solitons” in the semi-infinite (or total-internal-reflection) gap or spatial “gap solitons” in the Bragg reflection gaps. Recently, in a series of experiments, we have “fabricated” closely-spaced waveguide arrays (photonic lattices) by optical induction. Such photonic structures have attracted great interest due to their novel physics, link to photonic crystals, as well as potential applications in optical switching and navigation. In this review article, we present a brief overview on our experimental demonstrations of a number of novel spatial soliton phenomena in light-induced photonic bandgap structures, including self-trapping of fundamental discrete solitons and more sophisticated lattice gap solitons. Much of our work has direct impact on the study of similar discrete phenomena in systems beyond optics, including sound waves, water waves, and matter waves (Bose-Einstein condensates) propagating in periodic potentials.  相似文献   

5.
The study of wave propagation in periodic systems is at the frontiers of physics, from fluids to condensed matter physics, and from photonic crystals to Bose-Einstein condensates. In optics, a typical example of periodic system is a closely-spaced waveguide array, in which collective behavior of wave propagation exhibits many intriguing phenomena that have no counterpart in homogeneous media. Even in a linear waveguide array, the diffraction property of a light beam changes due to evanescent coupling between nearby waveguide sites, leading to normal and anomalous discrete diffraction. In a nonlinear waveguide array, a balance between diffraction and self-action gives rise to novel localized states such as spatial “discrete solitons” in the semi-infinite (or total-internal-reflection) gap or spatial “gap solitons” in the Bragg reflection gaps. Recently, in a series of experiments, we have “fabricated” closely-spaced waveguide arrays (photonic lattices) by optical induction. Such photonic structures have attracted great interest due to their novel physics, link to photonic crystals, as well as potential applications in optical switching and navigation. In this review article, we present a brief overview on our experimental demonstrations of a number of novel spatial soliton phenomena in light-induced photonic bandgap structures, including self-trapping of fundamental discrete solitons and more sophisticated lattice gap solitons. Much of our work has direct impact on the study of similar discrete phenomena in systems beyond optics, including sound waves, water waves, and matter waves (Bose-Einstein condensates) propagating in periodic potentials.   相似文献   

6.
We study optical analogues of higher-order Dirac solitons (HODSs) in binary waveguide arrays. Like higher-order solitons obtained from the well-known nonlinear Schrödinger equation governing the pulse propagation in an optical fiber, these HODSs have amplitude profiles which are numerically shown to be periodic over large propagation distances. At the same time, HODSs possess some unique features. Firstly, the period of a HODS depends on its order parameter. Secondly, the discrete nature in binary waveguide arrays imposes the upper limit on the order parameter of HODSs. Thirdly, the order parameter of HODSs can vary continuously in a certain range.  相似文献   

7.
Feng Zang  Lu Li   《Optics Communications》2008,281(21):5409-5414
In this paper, we investigate the influences of 3-photon absorption on discrete X-waves in nonlinear normally dispersive waveguide arrays. It is found that 3-photon absorption can cause the decrease of the total power, which results in the appearances of the discrete diffraction for an intermediate input peak-power and the discrete X-wave for a higher input peak-power. Also, the interaction between pulses for different waveguide excitation are studied in detail. The results show that for the in-phase waveguide excitation of neighboring channels, the bound states can be formed by choosing properly the initial peak-power; for the in-phase waveguide excitation of distant channels, however, the bound states can not be formed. For the out-of-phase multiple waveguide excitation, due to interplay the repulsive force and nonlinearity, the interaction of two pulses can form the X-like wave or the double X-like wave as long as choosing the proper input peak-power.  相似文献   

8.
We demonstrate that both the linear (diffraction) and the nonlinear dynamics of two-dimensional waveguide arrays are considerably more complex and versatile than their one-dimensional counterparts. The discrete diffraction properties of these arrays can be effectively altered, depending on the propagation Bloch k-vector within the first Brillouin zone of the lattice. In general, this diffraction behavior is anisotropic and therefore permits the existence of a new class of discrete elliptic solitons in the nonlinear regime.  相似文献   

9.
We present theoretical and experimental studies on nonlinear beam propagation in lithium niobate waveguide arrays utilizing higher-order second harmonic bands. We find that the implementation of the higher-order second harmonic bands leads to a number of new effects. The combined interaction of two second harmonic bands with a propagating fundamental beam can lead to a complete inhibition of nonlinear effects or to the formation of discrete spatial solitons, depending only on the wavelength of the fundamental wave. Furthermore we analyze the properties of discrete solitons, allowing for linear coupling of the second harmonic. Here we predict and demonstrate experimentally a power dependent phase transition of the soliton topology.  相似文献   

10.
The modulational instability of a plane wave for a discrete nonlinear Schrödinger equation with arbitrary nonlocality is analyzed. This model describes light propagation in a thin film planar waveguide arrays of nematic liquid crystals subjected to a periodic transverse modulation by a low frequency electric field. It is shown that nonlocality can both suppress and promote the growth rate and bandwidth of instability, depending on the type of a response function of a discrete medium. A solitary wave (breather-like) solution is built by the variational approximation and its stability is demonstrated.  相似文献   

11.
We experimentally study dispersive shock waves in nonlinear waveguide arrays. In contrast with gap solitons, the nonlinearity here pushes the propagation constant further into the transmission bands, facilitating Bloch mode coupling and energy transport. We directly observe this coupling, both within and between bands, by recording intensity in position space and power spectra in momentum space.  相似文献   

12.
We analyze stability and generation of discrete gap solitons in weakly coupled optical waveguides. We demonstrate how both stable and unstable solitons can be observed experimentally in the engineered binary waveguide arrays and also reveal a connection between the gap-soliton instabilities and limitations on the mutual beam focusing in periodic photonic structures.  相似文献   

13.
肖发俊  张鹏  刘圣  赵建林 《物理学报》2008,57(4):2529-2536
采用Petviashvili迭代法对光诱导平面波导阵列中的一维离散空间光孤子进行求解,利用分步束传播法对离散空间光孤子间的相干相互作用进行了详细的数值模拟.探讨了离散孤子间的相位差、孤子光强、波导阵列写入光的强度和周期以及外加电场对相互作用过程的影响.结果表明:离散孤子间的相位差对相互作用的影响与连续介质中的情况类似,不同相位差情况下的相互作用也表现为吸引、排斥以及能量转移等现象.同时,离散孤子间的相干相互作用过程(如融合距离和排斥间距等)均会受到孤子光强、波导阵列写入光的强度和周期以及外加电场大小的影响 关键词: 光诱导平面波导阵列 离散空间光孤子 相干相互作用  相似文献   

14.
We investigate the existence and stability of different families of spatial solitons in optical waveguide arrays whose amplitudes obey a disordered distribution. The competition between focusing nonlinearity and linearly disordered refractive index modulation results in the formation of spatial localized nonlinear states. Solitons originating from Anderson modes with few nodes are robust during propagation. While multi-peaked solitons with in-phase neighboring components are completely unstable, multipole-mode solitons whose neighboring components are out-of-phase can propagate stably in wide parameter regions provided that their power exceeds a critical value. Our findings, thus, provide the first example of stable higher-order nonlinear states in disordered systems.  相似文献   

15.
Egorov O  Lederer F  Staliunas K 《Optics letters》2007,32(15):2106-2108
We describe what we believe to be novel types of discrete cavity solitons in nonlinear waveguide arrays that are driven by an external holding beam. We demonstrate that a holding beam with a definite inclination drives the system in a subdiffractive regime and allows the formation of stable discrete cavity solitons. We predict the existence of both bright and dark moving midband discrete cavity solitons for an identical set of system parameters for both focusing and defocusing Kerr nonlinearities.  相似文献   

16.
We report an experimental study of discrete gap solitons in binary arrays of optical waveguides. We observe self-focusing indicating soliton generation when the inclination angle of an input beam is slightly above the Bragg angle and show that the propagation direction of the emerging gap soliton is influenced by the effect of interband momentum exchange.  相似文献   

17.
We analyze nonlinear collective effects in periodic systems with multigap transmission spectra such as light in waveguide arrays or Bose-Einstein condensates in optical lattices. We reveal that the interband interactions in nonlinear periodic structures can be efficiently managed by controlling their geometry. We predict novel types of discrete vector solitons supported by nonlinear coupling between different band gaps and study their stability.  相似文献   

18.
The existence and dynamical properties of discrete solitons in inhomogeneous waveguide arrays with a Kerr nonlinearity are studied in two different configurations. First we investigate the effect of a longitudinal periodic modulation of the coupling strength on the dynamics of discrete solitons. It is shown that resonances of internal modes of the soliton with the longitudinal structure may lead to soliton oscillations and decay. Second we study the existence and stability of discrete solitons in arrays exhibiting a linear variation of the waveguide effective index in the transverse direction. We find that resonant coupling between conventional discrete solitons and linear Wannier-Stark states leads to the formation of so-called hybrid discrete solitons.  相似文献   

19.
We experimentally investigate the interaction of counterpropagating discrete solitons in a one-dimensional waveguide array in photorefractive lithium niobate. While for low input powers only weak interaction and formation of counterpropagating vector solitons are observed, for higher input powers a growing instability results in discrete lateral shifting of the formed discrete solitons. Numerical modeling shows the existence of three different regimes: stable propagation of vector solitons at low power, instability for intermediate power levels leading to discrete shifting of the two discrete solitons, and an irregular temporal dynamic behavior of the two beams for high input power.  相似文献   

20.
We report on the observation of surface gap solitons found to exist at the interface between uniform and periodic dielectric media with defocusing nonlinearity. We demonstrate strong self-trapping at the edge of a LiNbO3 waveguide array and the formation of staggered surface solitons with propagation constant inside the first photonic band gap. We study the crossover between linear repulsion and nonlinear attraction at the surface, revealing the mechanism of nonlinearity-mediated stabilization of the surface gap modes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号