首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
GaN-based InGaN/GaN multi-quantum-well light emitting diode (MQW LED) structures were grown by metal organic chemical vapor deposition method. The optical properties of the LED structure have been investigated by using the photoluminescence and electroluminescence measurement. Both photoluminescence and electroluminescence results indicate that near pure InN clusters exist within the InGaN layers, which are responsible for the light emission in the LED. With increasing the Mg activation temperature of p-GaN layer, the optical properties of the LED structure tended to significantly degrade. This degradation was found to be deeply related to the variation of InN clusters in the active region. By the current–voltage measurement, a large forward voltage variation was observed. The voltage variation is caused to the conductivity variation of the p-GaN layer due to the different activation temperature. The turn-on voltage obtained from the best LED was 2.56 V and the forward voltage measured at 20 mA was 3.5 V. On the basis of these results, activation of the Mg-doped p-GaN layer must be carried out at the lowest possible value so as to obtain the better performance of LEDs.  相似文献   

2.
To improve the properties of polycrystalline Ge thin films, which are a candidate material for the bottom cells of low cost monolithic tandem solar cells, ∼300 nm in situ hydrogenated Ge (Ge:H) thin films were deposited on silicon nitride coated glass by radio-frequency magnetron sputtering. The films were sputtered in a mixture of 15 sccm argon and 10 sccm hydrogen at a variety of low substrate temperatures (Ts)≤450 °C. Structural and optical properties of the Ge:H thin films were measured and compared to those of non-hydrogenated Ge thin films deduced in our previous work. Raman and X-ray diffraction spectra revealed a structural evolution from amorphous to crystalline phase with increase in Ts. It is found that the introduction of hydrogen gas benefits the structural properties of the polycrystalline Ge film, sputtered at 450 °C, although the onset crystallization temperature is ∼90 °C higher than in those sputtered without hydrogen. Compared with non-hydrogenated Ge thin films, hydrogen incorporated in the films leads to broadened band gaps of the films sputtered at different Ts.  相似文献   

3.
Ag-doped ZnO (ZnO:Ag) thin films were deposited on quartz substrates by radio frequency magnetron sputtering technique. The influence of oxygen/argon ratio on structural, electrical and optical properties of ZnO:Ag films has been investigated. ZnO:Ag films gradually transform from n-type into p-type conductivity with increasing oxygen/argon ratio. X-ray photoelectron spectroscopy measurement indicates that Ag substitutes Zn site (AgZn) in the ZnO:Ag films, acting as acceptor, and being responsible for the formation of p-type conductivity. The presence of p-type ZnO:Ag under O-rich condition is attributed to the depression of the donor defects and low formation energy of AgZn acceptor. The I–V curve of the p-ZnO:Ag/n-ZnO homojunction shows a rectification characteristic with a turn-on voltage of ∼7 V.  相似文献   

4.
We studied the structural and optical properties of a set of nominally undoped epitaxial single layers of InxGa1−xN (0<x0.2) grown by MOCVD on top of GaN/Al2O3 substrates. A comparison of composition values obtained for thin (tens of nanometers) and thick (≈0.5 μm) layers by different analytical methods was performed. It is shown that the indium mole fraction determined by X-ray diffraction, measuring only one lattice parameter strongly depend on the assumptions made about strain, usually full relaxation or pseudomorphic growth. The results attained under such approximations are compared with the value of indium content derived from Rutherford backscattering spectrometry (RBS). It is shown that significant inaccuracies may arise when strain in InxGa1−xN/GaN heterostructures is not properly taken into account. Interpretation of these findings, together with the different criteria used to define the optical bandgap of InxGa1−xN layers, may explain the wide dispersion of bowing parameters found in the literature. Our results indicate a linear, Eg(x)=3.42−3.86x eV (x0.2), “anomalous” dependence of the optical bandgap at room temperature with In content for InxGa1−xN single layers.  相似文献   

5.
Selective-area growth (SAG) of InGaN/GaN multiple quantum wells (MQWs) was performed by metalorganic vapor phase epitaxy (MOVPE). The layers of a blue light-emitting diode (LED), that includes five InGaN quantum wells, were grown on a patterned GaN template on a sapphire substrate. In order to elucidate the contribution of vapor-phase diffusion of group-III precursors to the in-plane modulation of luminescence wavelength, the width of a stripe selective growth area was 60 μm that is sufficiently larger than the typical surface diffusion length, with the mask width varied stepwise between 30 and 240 μm. The distribution of the luminescence wavelength from the MQWs was measured with cathode luminescence (CL) across the stripe growth area. The peak wavelength ranged between 420 and 500 nm. The peak shifted to longer wavelengths and became broader as the measured point approached to the mask edge. Such a shift in the peak wavelength exhibited parabolic profile in the growth area and the wider mask shifted the entire peak positions to longer wavelengths. These trends clearly indicate that the vapor-phase diffusion play a dominant role in the in-plane modulation of the luminescence wavelength in the SA-MOVPE of InGaN MQWs, when the size of a growth area and/or the mask width exceeds approximately 10 μm.  相似文献   

6.
Thermodynamic analyses of halide vapor phase epitaxy (HVPE) for the growth of ZnO were conducted to investigate the effects of growth conditions against growth rates. The partial pressures of gaseous species in equilibrium with ZnO and the resultant driving force for ZnO deposition are calculated with respect to temperatures, input H2 pressures and input VI/II ratios. It has been revealed that the driving force is weakly dependent on the temperature and is still positive even at 1200 °C, while it greatly decreases at higher temperatures in the presence of H2. The driving force is also significantly influenced when the VI/II ratio is below 1000. The experimental growth rates substantially agree with the dispositions of the driving force expected from the thermodynamic analyses.  相似文献   

7.
The thermal stability of ∼200-nm-thick InGaN thin films on GaN was investigated using isothermal and isochronal post-growth anneals. The InxGa1−xN films (x=0.08–0.18) were annealed in N2 at 600–1000 °C for 15–60 min, and the resulting film degradation was monitored using X-ray diffraction (XRD) and photoluminescence (PL) measurements. As expected, films with higher indium concentration showed more evidence for decomposition than the samples with lower indium concentration. Also for each alloy composition, decreases in the PL intensity were observed starting at much lower temperatures compared to decreases in the XRD intensity. This difference in sensitivity of the PL and XRD techniques to the InGaN decomposition suggest that defects that quench luminescence are generated prior to the onset of structural decomposition. For the higher indium concentration films, the bulk decomposition proceeds by forming metallic indium and gallium regions as observed by XRD. For the 18% indium concentration film, measurement of the temperature-dependent InGaN decomposition yields an activation energy, EA, of 0.87±0.07 eV, which is similar to the EA for bulk InN decomposition. The InGaN integrated XRD signal of the 18% film displays an exponential decrease vs. time, implying InGaN decomposition proceeds via a first-order reaction mechanism.  相似文献   

8.
Various techniques for morphological evolution of InGaN/GaN multiple quantum well (MQW) structures grown by metalorganic chemical vapor deposition have been evaluated. Atomic force microscopy, photoluminescence (PL) and X-ray diffraction measurements have been used for characterization. It is shown that inclusions, that are generated into the V-defects in the InGaN quantum wells (QW), can be removed by introducing a small amount of hydrogen during the growth of GaN barriers. This hydrogen treatment results in partial loss of indium from the QWs, but smooth surface morphology of the MQW structure and improved optical quality of InGaN wells are obtained. The density of the V-defects could be reduced by reducing the dislocation density of the underlying GaN buffer.  相似文献   

9.
The polycrystalline CdTe films were deposited by the close-spaced vacuum evaporation at the different substrate temperatures (150–550 °C). The X-ray diffraction measurements of structural and substructural properties of these films were carried out to study their phase composition and texture. The films’ parameters such as the coherent scattering domain size, microdeformation level and mean density of dislocations were determined based on the broadening of diffraction peaks. In this case the Hall and three-fold convolution approximations were used. Surface morphology, grain size and growth mechanism of the films were determined by the scanning electron microscopy. The low temperature photoluminescence measurements allowed us to establish the correlation between the point and extended defect structure on the one hand and the growth conditions on the other. As a result, the growth conditions of CdTe polycrystalline films with fairly good crystal and optical quality were determined.  相似文献   

10.
The effects of multi-step rapid thermal annealing (RTA) for the self-assembled InAs quantum dots (QDs), which were grown by a molecular beam epitaxy (MBE), were investigated through photoluminescence (PL) and transmission electron microscopy (TEM). Postgrowth multi-step RTA was used to modify the structural and optical properties of the self-assembled InAs QDs. Postgrowth multi-step RTAs are as follows: one step (20 s at 750 °C); two step (20 s at 650 °C, 20 s at 750 °C); three step (30 s at 450 °C, 20 s at 650 °C, 20 s at 750 °C). It is found that significant narrowing of the luminescence linewidth (from 132 to 31 meV) from the InAs QDs occurs together with about 150 meV blueshift by two-step annealing, compared to as-grown InAs QDs. Observation of transmission electron microscopy (TEM) shows the existence of the dots under one- and two-step annealing but the disappearance of the dots by three-step annealing. Comparing with the samples under only one-step annealing, we demonstrate a significant enhancement of the interdiffusion in the dot layer under multi-step annealing.  相似文献   

11.
Nitrogen-doped ZnO films were deposited on silicon (1 0 0) substrate using zinc acetate and ammonium acetate aqueous solution as precursors by ultrasonic spray pyrolysis. Successful p-type doping can be realized at optimized substrate temperature. The p-type ZnO films show excellent electrical properties such as hole concentration of 1018 cm−3, hole mobility of 102 cm2 V−1 s−1 and resistivity of 10−2 Ω cm. In the photoluminescence measurement, a strong near-band-edge emission was observed, while the deep-level emission was almost undetectable in both undoped and N-doped ZnO films. The growth and doping mechanism of N-doped ZnO films were discussed.  相似文献   

12.
Large-area (>1 cm2) freestanding translucent orthorhombic boron nitride (oBN) films have been synthesized by magnetron sputtering at a low radio-frequency power of 120 W. The structural characterizations were performed by means of X-ray diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. It is demonstrated that oBN is a direct band gap semiconductor (Eg∼3.43 eV). Excited by ultraviolet laser (wavelength at 325 nm), the oBN films emit strong white light, which can be seen by the naked eyes in the dark. In the photoluminescence spectrum, besides the ultraviolet near-band-edge radiative recombination emission, there are three visible emission bands (centered at 400, 538, and 700 nm) arising from the defect-related deep-level centers of oBN, which are mixed to form the white light emission. The hardness and elastic modulus of oBN films are 11.5 and 94 GPa, respectively, examined by nanoindentation measurements.  相似文献   

13.
This study examined the influence of strain-compensated triple AlGaN/GaN/InGaN superlattice structures (SLs) in n-GaN on the structural, electrical and optical characteristics of LEDs by analyzing the etch pits density (EPD), stress measurement, high-resolution X-ray diffraction (HRXRD), sheet resistance, photoluminescence (PL) and light–current–voltage (LIV). EPD, stress measurement and HRXRD studies showed that the insertion of AlGaN/GaN/InGaN SLs during the growth of n-GaN effectively distributed and compensated for the strong compressive stress, and decreased the dislocation density in n-GaN. The operating voltage at 20 mA for the LEDs grown with SLs decreased to 3.18 V from 3.4 V for the LEDs grown without SLs. In addition, a decrease in the spectral blue shift compared to the LEDs grown without SLs was observed in the LEDs grown with the SLs.  相似文献   

14.
The optical loss co-efficient in InGaN laser diodes, emitting at 410 nm, has been measured. The measurement technique is based on the transmission of internally generated spontaneous emission through varying lengths of the laser waveguide. It is unique in that it provides spectral and spatial information on the optical loss. The lasers studied are typical of InGaN structures showing a high degree of waveguide loss, i=40cm−1. The measurements also show clear evidence of higher order transverse modes in the direction perpendicular to the growth plane with resonant leakage of the optical field into the outer layers of the structure. This produces a modulation in the loss of these modes.  相似文献   

15.
Effects of the oxygen partial pressure on pulsed-laser deposition of MgO buffer layers on silicon substrates were investigated. The overall growth process was monitored in situ by reflection high-energy electron diffraction (RHEED) method. It was found that the crystallinity and surface morphology of the MgO films were strongly affected by oxygen partial pressure in the deposition chamber. The oxygen-pressure dependence could be explained in terms of interactions of oxygen with species in the plume-like plasma. The MgO film obtained at an optimal oxygen-pressure range of 1×10−2–1 Pa exhibited an atomic-smooth and defect-free surface (the root-mean-square roughness being as low as 0.82 nm). For the metal–insulator–metal (MIM) structure of Au/MgO (150 nm)/TiN prepared at the optimal growth conditions achieved a very low leak current density of 10−7 A cm−2 at an electric field of 8×105 V cm−1 and the permittivity (εr) of about 10.6, virtually the same as that of the bulk MgO single crystals.  相似文献   

16.
High quality Zn1−xFexO thin films were deposited on α-sapphireα-sapphire substrates by RF magnetron sputtering. X-ray absorption fine structure measurements showed that the chemical valence of Fe ions in the films was a mixture of 2+ and 3+ states, and Fe ions substituted mainly for the Zn sites in the films. DC-magnetization measurements revealed ferromagnetic properties from 5 to 300 K. The photoluminescence measurements at 15 K showed a sharp main transition peak at 3.35 eV along with a broad impurity peak at 2.45 eV. The structural and magnetization analyses of the Zn1−xFexO films strongly suggested that the ferromagnetism was the intrinsic properties of the films.  相似文献   

17.
Mixed-phase solidification (MPS) is a new beam-induced solidification method that can produce large-grained and highly (1 0 0)-surface textured polycrystalline Si films on SiO2. The grains resulting from this mixed-phase solidification (MPS) method, which was conceived based on a well-known phenomenon of coexisting solid–liquid regions in radiatively melted Si films, are found to be essentially devoid of various intragrain defects that always plague, and subsequently degrade the utility of large-grained Si films previously obtained using other crystallization techniques. It is experimentally shown that multiple exposures are required in order to generate such a polycrystalline microstructure from an initial amorphous precursor. The observed trends are conceptually explained in terms of the melt being initiated primarily at grain boundaries in polycrystalline films, and melting and solidification subsequently proceeding laterally at interface-location specific rates as determined by the local thermodynamic factors, which include the anisotropic surface and interfacial energies of the grains, and the unusual local thermal profile—all transpiring within a near-equilibrium but nonisothermal and dynamic environment that needs to address the thermal and stability requirements associated with the coexisting solid–liquid regions.  相似文献   

18.
A series of Ag-doped La0.6Pb0.4MnO3 thin films were grown on vicinal cut substrates by pulsed laser deposition (PLD). Laser-induced thermoelectric voltages (LITV) had been observed in these films, and these LITV signals had been demonstrated to originate from the anisotropic Seebeck effect. By doping Ag to an optimum value, it was found that the peak values (UP) of the LITV signals were maximized, and the full-width at half-maximum (τ) of the response curves of LITV were minimized at the same time. The figure of merit (Fm) of the device used as photodetector is greatly improved by doping Ag in La0.6Pb0.4MnO3 thin films. The possible reason for these improvements had been well discussed.  相似文献   

19.
The dark-brown colored 5 at% Yb-doped YAlO3 (Yb:YAP) single crystal was grown successfully by temperature gradient technique (TGT) for the first time. The TGT-grown Yb:YAP crystal with the perovskite structure and excellent crystallization perfection were confirmed by the X-ray diffractions techniques. The dark-brown color of TGT-Yb:YAP crystal turned into the colorless after annealing in the air at 1200 °C for 10 h. The absorption spectra, LD-excited infrared emission and X-ray excited luminescence spectra of the air-annealed Yb:YAP single crystal were investigated at the room temperature. The results indicate that the TGT-Yb:YAP single crystals can be used for the laser and scintillation applications.  相似文献   

20.
Single crystalline Ce-doped ZnO hexagonal nanoplatelets are successfully synthesized. Zinc acetate, cerium nitrate, potassium hydroxide and poly vinyl alcohol were mixed together and transferred to a 100 mL Teflon-lined stainless steel autoclave kept at 150 °C for 24 h. The obtained precipitant is calcined at 600 °C. The morphology and microstructure were determined by field emission scanning electron microscopy (FE-SEM), X-ray diffraction transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX) and photoluminescence (PL) spectroscopy. The investigation confirmed that the products were of the wurtzite structure of ZnO. The doped hexagonal nanoplatelets have edge length 25 nm and thickness 11 nm. EDX result showed that the amount of Ce in the product is about 15%. Photoluminescence of these doped hexagonal nanoplatelets exhibits a blue shift and weak ultraviolet (UV) emission peak, compared with pure ZnO, which may be induced by Ce-doping. The growth mechanism of the doped hexagonal nanoplatelets was also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号