首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Relative intensities of eight vibronic bands, belonging to the Δυ = −2 sequence of the B 2Σ+X 2Σ+ electronic transition of four GaO isotopomers have been measured and interpreted in terms of possible isotope effects on the parameters governing the band intensity. Obtained results showed very small isotope effect on the Franck-Condon factors and r-centroids and revealed that the observed intensity ratios of the corresponding isotope bands are controlled mainly by the isotope abundance of 69Ga and 71Ga in natural gallium. The article is published in the original.  相似文献   

2.
\( {\text{CN}} (B^{2}\Sigma ^{ + } \to X^{2}\Sigma ^{ + } ) \) violet system was investigated using optical emission spectroscopy in a non-equilibrium microwave atmospheric-pressure plasma jet in argon expanding in air. From the analysis of the emission spectra of the discharge in the range of 380 and 400 nm, the violet system of CN was found to be overlapped with the \( {\text{N}}_{2}^{ + } \left( {B^{2}\Sigma _{u}^{ + } , v = 1 \to X^{2}\Sigma _{g}^{ + } , v = 1} \right) \) and \( {\text{N}}_{2} \left( {C^{3}\Pi _{u} \to B^{3}\Pi _{g} } \right) \) bands, sequence \( \Delta \upsilon = - \;3 \). A numerical disentangle technique, developed in this work, permitted to obtain a well resolved violet system from the different systems observed, namely the nitrogen First Negative and the Second Positive systems. The \( {\text{CN}} (B^{2}\Sigma ^{ + } \to X^{2}\Sigma ^{ + } ) \) band head intensity was determined and analysed as function of discharge powers between 30 and 150 W and fluxes between 2.5 and 10.0 slm. With aid of this numerical approach it was also possible to obtain the rotational temperature, from (1600 ± 100) to (2300 ± 100) K and vibrational temperature between (9000 ± 800) and (14,000 ± 800) K along the plasma jet. The kinetics of \( {\text{CN}} (B^{2}\Sigma ^{ + } ) \) state was analysed as well.  相似文献   

3.
4.
Calculations of the adiabatic potential energy curves and the transition dipole moments between the ground (A1Σ+) and the first excited (A1Σ+) states have been determined for the LiCs and NaCs molecules. The calculations are performed using an ab initio approach based on non-empirical pseudopotentials for Cs+, Li+ and Na+ cores, parameterized l-dependent polarization potentials and full configuration interaction calculations. The potential energy curves and the transition dipole moment are used to estimate the radiative lifetimes of the vibrational levels of the A+Σ+ state using the Franck–Condon (FC) approximation and the approximate sum rule method. The radiative lifetimes associated with the A+Σ+ state are presented here for the first time. These data can help experimentalists to optimize photoassociative formation of ultracold molecules and their longevity in a trap or in an optical lattice.  相似文献   

5.
We have performed ab initio fourth-order Møller–Plesset perturbation theory calculations in the framework of the supermolecule approach on the vertical excitation spectra of the weakly bound van der Waals N2–He dimer. They indicate a ``T-shaped' stablest ground N2(X1g+)–He(1S) electronic state with a well depth, De, of 21.63 cm–1 at a minimum distance, Re, of 3.44 Å and zero-point vibration correction, Do, of 7.07 cm–1. They also indicate a ``T-shaped' stablest excited conformer with Re=3.25 Å, De=36.85 cm–1 and Do=17.06 cm–1 for the N2(B3g)–He(1S) triplet electronic level. In order to investigate the use of less-demanding correlation methods, test density functional theory calculations using the mPW1PW exchange–correlation functional are also presented for comparison.  相似文献   

6.
A detailed theoretical study is carried out at the B3LYP/6-311G(d,p) and CCSD(T)/6-311++G(3df,2pd) (single-point) levels as an attempt to investigate the mechanism of the little understand ion–molecule reaction between HCN+ and NH3. Various possible reaction pathways are considered. It is shown that six dissociation products P 1 (NH3 + + HCN), P 2 (NH4 + + CN), P 3 (NH3 + + HNC), P 9 (HCNH+ + NH2) P 10 (NCNH3 + + H), and P 12 (HNCNH2 + + H) are both thermodynamically and kinetically feasible. Among these products, P 1 is the most competitive product with predominant abundance. P 3 and P 9 may be the second feasible products with comparable yields. P 12 may be the least possible product followed by the almost negligible P 2 and P 10 . Because the isomers and transition states involved in the HCN+ + NH3 reaction all lie below the reactant, the title reaction is expected to be rapid, which is consistent with the measured large rate constant in experiment. The title reaction may have a potential relevance in Titan’s atmosphere, where the temperature is very low. Furthermore, our calculated results are compared with the previous experimental findings.  相似文献   

7.
The cation [CpRu(η6-C10H8)]+ was shown to exchange naphthalene for other arenes under visible-light irradiation to form the complexes [CpRu (η6-arene)]+ (arene = C6H6, 1,4-C6H4Me2, 1,3,5-C6H3Me3, or 1,2,4,5-C 6H2Me4) in 70–95% yields. The reaction rate of exchange decreases in the series arene = 1,4-C6H4Me2 > C6H6 > 1,3,5-C6H3Me3 > 1,2,4,5-C 6H2Me4 >> C6Me6 and increases with the coordinating ability of the solvent in the order CH2Cl2 < THF—CH2Cl2 mixture (1: 1) < acetone.  相似文献   

8.
Labeling of diethylenetriamine-N,N,N′,N″,N″-pentakis(methylenephosphonic) acid (DTPMP) with rhenium-188 using stannous chloride as a reducing agent has been investigated. Dependence of the yield of the 188Re–DTPMP complex on the concentration of the reducing agent, pH, reaction time, temperature, ascorbic acid and amount of carrier added has been studied. Under optimum conditions, the labeling yield of 188Re–DTPMP complex is 95% for the carrier-free 188Re but with the carrier-added 188Re the labeling yield is more than 97%. Furthermore, the stability of the 188Re–DTPMP complex against pH change and dilution with saline has been also studied. It is found that the addition of carrier stabilizes the 188Re–DTPMP complex against pH change and dilution.  相似文献   

9.
Naphthalene in the [CpRu(6−C10H8)]+ complex (1) is substituted for other arenes under reflux in 1,2-dichloroethane to form the [CpRu(6-arene)]+ cations (arene = C6H6, 1,2-C6H4Me2, 1,2,4,5-C6H2Me4, or C6Me6) in 70–80% yields. The reaction is accelerated in the presence of a catalytic amount of acetonitrile. The structure of [1]PF6 was established by X-ray diffraction.  相似文献   

10.
Quasi-classical trajectory calculations and stochastic one-dimensional chemical master equation simulation methods are used to study the dynamics of the reaction of amidogen radical [NH2(2B1)] with hydroperoxyl radical [HO2(2A″)] on the lowest singlet electronic state. The title complex reaction takes place on a multi-well multichannel potential energy surface consisting of three deep potential wells and one van der Waals complex. In quasi-classical trajectory calculations a new analytical potential energy surface based on CCSD(T)/aug-cc-pVTZ//MPW1K/6-31+G(d,p) ab initio method was driven and used to study the dynamics of the title reaction. In quasi-classical trajectory calculations, the reactive cross sections and reaction probabilities are determined for 200–2000 K relative translational energies to calculate the rate constants. The same ab initio method was used to have the necessary data for solving the one-dimensional chemical master equation to calculate the rate constants of different channels. In solving the master equation, the Lennard-Jones potential model was used to form the collision between the collider gases. The fractional populations of different intermediates and products in the early stages of the reaction were examined to determine the role of the energized intermediates and the van der Waals complex on the dynamics of the title reaction. Although the calculated total rate constants from both methods are in good agreement with the reported experimental values in the literature, the quasi-classical trajectory simulation predicts the formation of NH2O + OH as the major channel in the title reaction in accordance with the previous studies (Sumathi and Peyerimhoff, Chem. Phys. Lett., 263:742–748, 1996), while the stochastic master equation simulation predicts the formation of HNO + H2O as the major products.  相似文献   

11.
The mechanism of formation of the electronically excited radical OH*(A2Σ+) has been studied by analyzing calculations quantitatively describing the results of shock wave experiments carried out in order to determine the moment of maximum OH* radiation at temperatures T < 1500 K and pressures P ≤ 2 atm in the H2 + O2 mixtures diluted by argon when the vibrational nonequilibrium is a factor determining the mechanism and rate of the overall process. In kinetic calculations, the vibrational nonequilibrium of the initial H2 and O2 components, the HO2, OH(X2Π), O2*(1Δ) intermediates, and the reaction product H2O were taken into account. The analysis showed that under these conditions the main contribution to the overall process of OH* formation is caused by the reactions OH + Ar → OH* + Ar, H2 + HO2 → OH* + H2O, H2 + O*(1D) → OH* + H, HO2 + O → OH* + O2 and H + H2O → OH* + H2, which occur in the vibrational nonequilibrium mode (their activation barrier is overcome due to the vibrational excitation of reactants), and by H + O3 → OH* + O2 and H + H2O2 → OH* + H2O, which are reverse to the reactions of chemical quenching.  相似文献   

12.
Using three accurate potential energy surfaces of the 3A″, 3A′, and 1A′ states constructed recently, we present a quasi-classical trajectory (QCT) calculation for O + HCl (v = 0, j = 0)  OH + Cl reaction at the collision energies (E col) of 14.0–20.0 kcal/mol. The three angular distribution functions—P(qr ) P(\theta_{r} ) , P(jr ) P(\varphi_{r} ) , and P(qr ,jr ) P(\theta_{r} ,\varphi_{r} ) , together with the four commonly used polarization-dependent differential cross-sections, \frac2ps \fracds00 dwt , \frac2ps \fracds20 dwt , \frac2ps \fracds22 + dwt , \textand \frac2ps \fracds21 - dwt {\frac{2\pi }{\sigma }}\,{\frac{{d\sigma_{00} }}{{d\omega_{t} }}},\,{\frac{2\pi }{\sigma }}\,{\frac{{d\sigma_{20} }}{{d\omega_{t} }}},\,{\frac{2\pi }{\sigma }}\,{\frac{{d\sigma_{22 + } }}{{d\omega_{t} }}},\,{\text{and}}\,{\frac{2\pi }{\sigma }}\,{\frac{{d\sigma_{21 - } }}{{d\omega_{t} }}} are exhibited to get an insight into the alignment and the orientation of the product OH radical. There is a similar behavior of the tendency scattering direction for the two triplet electronic states (3A″ and 3A′)—backward scattering dominates, however, forward scattering prevails for the case of 1A′ state. Also, obvious differences have been found in the stereo-dynamical information, which reveals the influences of the potential energy surface and the collision energy. The degrees of polarization and the influence of the collision energy on the stereo-dynamics characters of the title reaction are both demonstrated in the order of 3A′ > 3A″ > 1A′.  相似文献   

13.
To apply the Cu+-assisted nucleophilic exchange based radioiodination of aromatic compounds for more lipophilic compounds the reaction is carried out in mixed solvent conditions. Due to its physicochemical properties acetonitrile is an attractive solvent. Although acetonitrile forms complexes with Cu+ decreasing the labeling yield. This article describes a method for the determination of the complex constant at labeling temperature based on a Lineweaver–Burk approach, relating the reaction rate constant and the concentration of precursor in presence of different amounts of acetonitrile. The method also allows to calculate the adjusted amount of copper salt in order to obtain the same high labeling yield as obtained in absence of acetonitrile.  相似文献   

14.
A new methodology for gas-phase uranium ion formation is described in which UO2 is dissolved in neat N-ethyl,N′-methylimidazolium fluorohydrogenate ionic liquid [EMIm+][F(HF)2.3?], yielding a blue-green solution. The solution was diluted with acetonitrile and then analyzed by electrospray ionization mass spectrometry. UF6? (a U(V) species) was observed at m/z?=?352, and other than cluster ions derived from the ionic liquid, nothing else was observed. When the sample was analyzed using infusion desorption chemical ionization, UF6? was the base peak, and it was accompanied by a less intense UF5? that most likely was formed by elimination of a fluorine radical from UF6?. Formation of UF6? required dissolution of UO2 followed by or concurrent with oxidation of uranium from the +?4 to the +?5 state and finally formation of the fluorouranate. Dissolution of UO3 produced a bright yellow solution indicative of a U(VI) species; however, electrospray ionization did not produce abundant U-containing ions. The abundant UF6? provides a vehicle for accurate measurement of uranium isotopic abundances free from interference from minor isotopes of other elements and a convenient ion synthesis route that is needed gas-phase structure and reactivity studies like infrared multiphoton dissociation and ion-molecule dissociation and condensation reactions. The reactive fluorohydrogenate ionic liquid may also enable conversion of uranium in oxidic matrices into uranium fluorides that slowly oxidize to uranyl fluoride under ambient conditions, liberating the metal for facile measurement of isotope ratios without extensive chemical separations.
Graphical abstract ?
  相似文献   

15.
A rapid method for the preparation of 87Y/87mSr radionuclide generator from a rubidium chloride target irradiated with 35 MeV α-particles is described. A simple two-step procedure is used to obtain a carrier-free 87mSr isotope with a high enough radiochemical yield and high purity in the final aqueous fraction.  相似文献   

16.
The nature of [HB≡CH], [H2B=CH2], and boratabenzene interactions with alkaline and alkaline earth metals are studied by ab initio calculations. The interaction energies are calculated at the B3LYP/6-311++G(d,p) level. The calculations suggest that the cation size and charge are two influential factors that affect the nature of the interaction. AIM and NBO analyses of the complexes indicate that the variation of densities and the extent of charge transfers upon complexation correlate well with the obtained interaction energies.  相似文献   

17.
Photosolvation of a PtIV hexathiocyanate complex Pt(SCN)6 2– in water and ethanol was studied by steady-state photolysis, nanosecond laser flash photolysis, and ultrafast kinetic spectroscopy. Complexes Pt(SCN)5(H2O) and Pt(SCN)5(C2H5OH) were found to be the only reaction products. The quantum yields of photosolvation are independent of the excitation wavelength, being equal to 0.25 and 0.5 for the solutions of the complex in water and ethanol, respectively. Photosolvation proceeds by the mechanism of heterolytic metal—ligand bond dissociation without involvement of redox processes. The characteristic time of formation of the end products for both solvents is about 10 ps. Three successive intermediates detected on the picosecond time scale were interpreted as PtIV complexes. The nature of the intermediates and possible mechanisms of photosolvation are discussed.  相似文献   

18.
In this work, an atrinuclear-oxo-centered complex of the CrFe2 type with the CF2ClCOO bridging ligand is newly synthesized. The complex is characterized by experimental and theoretical methods. The optimized geometry and theoretical vibrational frequencies are computed using the density functional theory (DFT) method. Also, the AIM analysis was applied to study changes in topological parameters such as the electron density at critical points of all the bonds of the complex. In the optimized geometry of the complex, three metal ions form a trigonal-planar structure with a μ3-O atom in its center. Each of M3+ metal ions has an octahedral coordination environment of oxygen atoms. The DFT results are in agreement with the experimental ones, confirming the validity of the optimized geometry for the complex.  相似文献   

19.
20.
Preparative method in combination with X-ray diffraction and IR spectroscopy is used to study reaction of Sb(III) fluoride with -aminoisovaleric acid (DL-valine) in an aqueous solution in the range of the molar ratios of components (0.25–2) : 1 in the presence of hydrofluoric acid. The molecular complex of Sb(III) fluoride with valine (1 : 1) of the composition SbF3{(CH3)2CHCH(+NH3)COO}(I) and valinium tetrafluoro-antimonate(III) monohydrate {(CH3)2CHCH(+NH3)COOH}SbF4· H2O (II) are synthesized for the first time. Crystal structure was determined for the molecular complex I consisting of SbF3 groups and valine molecules united into polymer chains through bidentate bridging carboxylate groups of amino acid molecules.Translated from Koordinatsionnaya Khimiya, Vol. 31, No. 2, 2005, pp. 125–131.Original Russian Text Copyright © 2005 by Zemnukhova, Davidovich, Udovenko, Kovaleva.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号