首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Time-Dependent Density Functional Theory (TD-DFT) computations, with M05-2X and PBE0 functionals, have been employed for a detailed study of the Electron-Driven Proton-Transfer (PT) processes in an Adenine-Thymine Watson-Crick Base Pair in the gas phase and in solution, with the bulk solvent described by the polarizable continuum model. In the gas phase, TD-DFT computations predict that the Adenine → Thymine Charge Transfer (CT) excited state undergoes a barrierless PT reaction, in agreement with CC2 computations (S. Perun, A. Sobolewski, W. Domcke, J. Phys. Chem. A, 2006, 110, 9031.). The good agreement between the TD-DFT approach and CC2 results validates the former for the studies of excited state properties, excited state proton transfer reaction, and deactivation mechanisms in the DNA base pairs. Next, it is shown that inclusion of solvent effects significantly influences the possibility of both barrier-less excited state proton transfer and radiation-less deactivation through conical intersection with the ground state, affecting the energy of the CT excited state in the Franck-Condon region, the energy barrier associated to the PT process and the energy gap with the ground electronic state. These findings clearly indicate that environmental effects, with a special attention to proper treatment of dynamical solvation effects, have to be included for reliable computational analysis of photophysical and photochemical processes occurring in condensed phases.  相似文献   

2.
Potential energy (PE) curves for the intramolecular proton transfer in the ground (GSIPT) and excited (ESIPT) states of o-hydroxybenzaldehyde (OHBA) were studied using DFT-B3LYP/6-31G(d) and TD-DFT-B3LYP/6-31G(d) level of theory, respectively. Our calculations suggest the non-viability of ground state intramolecular proton transfer in this compound. Excited states PE calculations support the ESIPT process in OHBA. The contour PE diagram and the variation of oscillator strength along the proton transfer co-ordinate support the dual emission in OHBA. Our calculations also support the experimental observations of Nagaoka et al. [S. Nagaoka, U. Nagashima, N. Ohta, M. Fujita, T. Takemura, J. Phys. Chem. 92 (1988) 166], i.e. normal emission of the title compound comes from S(2) state and the red-shifted proton transfer band appears from the S(1) state. ESIPT process has also been explained in terms of HOMO and LUMO electron density of the enol and keto tautomer of OHBA and from the potential energy surfaces.  相似文献   

3.
The electronic excited states of the [COH2]+ system have been studied in order to establish their role in the dynamics of the C+ + H2O-->[COH]+ +H reaction, which is a prototypical ion-molecule reaction. The most relevant minima and saddle points of the lowest excited state have been determined and energy profiles for the lowest excited doublet and quartet electronic states have been computed along the fragmentation and isomerization coordinates. Also, nonadiabatic coupling strengths between the ground and the first excited state have been computed where they can be large. Our analysis suggests that the first excited state could play an important role in the generation of the formyl isomer, which has been detected in crossed beam experiments [D. M. Sonnenfroh et al., J. Chem. Phys. 83, 3985 (1985)], but could not be explained in quasiclassical trajectory computations [Y. Ishikawa et al., Chem. Phys. Lett. 370, 490 (2003); J. R. Flores, J. Chem. Phys. 125, 164309 (2006)].  相似文献   

4.
CASSCF computations show that the hydrogen-transfer-induced fluorescence quenching of the (1)(pi,pi*) excited state of zwitterionic tryptophan occurs in three steps: (1) formation of an intramolecular excited-state complex, (2) hydrogen transfer from the amino acid side chain to the indole chromophore, and (3) radiationless decay through a conical intersection, where the reaction path bifurcates to a photodecarboxylation and a phototautomerization route. We present a general model for fluorescence quenching by hydrogen donors, where the radiationless decay occurs at a conical intersection (real state crossing). At the intersection, the reaction responsible for the quenching is aborted, because the reaction path bifurcates and can proceed forward to the products or backward to the reactants. The position of the intersection along the quenching coordinate depends on the nature of the states and, in turn, affects the formation of photoproducts during the quenching. For a (1)(n,pi*) model system reported earlier (Sinicropi, A.; Pogni, R.; Basosi, R.; Robb, M. A.; Gramlich, G.; Nau, W. M.; Olivucci, M. Angew. Chem., Int. Ed. 2001, 40, 4185-4189), the ground and the excited state of the chromophore are hydrogen acceptors, and the excited-state hydrogen transfer is nonadiabatic and leads directly to the intersection point. There, the hydrogen transfer is aborted, and the reaction can return to the reactant pair or proceed further to the hydrogen-transfer products. In the tryptophan case, the ground state is not a hydrogen acceptor, and the excited-state hydrogen transfer is an adiabatic, sequential proton and electron transfer. The decay to the ground state occurs along a second reaction coordinate associated with decarboxylation of the amino acid side chain and the corresponding aborted conical intersection. The results show that, for (1)(pi,pi*) states, the hydrogen transfer alone is not sufficient to induce the quenching, and explain why fluorescence quenching induced by hydrogen donors is less general for (1)(pi,pi*) than for (1)(n,pi*) states.  相似文献   

5.
Density functional theory (DFT) calculations are used to study the strength of the CH…O H‐bond in the proton transfer reaction of glycine. Comparison has been made between four proton transfer reactions (ZW1, ZW2, ZW3, SCRFZW) in glycine. The structural parameters of the zwitterionic, transition, and neutral states of glycine are strongly perturbed when the proton transfer takes place. It has been found that the interaction of water molecule at the side chain of glycine is high in the transition state, whereas it is low in the zwitterionic and neutral states. This strongest multiple hydrogen bond interaction in the transition state reduces the barrier for the proton transfer reaction. The natural bond orbital analysis have also been carried out for the ZW2 reaction path, it has been concluded that the amount of charge transfer between the neighboring atoms will decide the strength of H‐bond. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

6.
The proton-transfer ground-state rate constants of the xanthenic dye 9-[1-(2-methyl-4-methoxyphenyl)]-6-hydroxy-3H-xanthen-3-one (TG-II), recovered by Fluorescence Lifetime Correlation Spectroscopy (FLCS), have proven to be useful to quantitatively reflect specific cation effects in aqueous solutions (J. M. Paredes, L. Crovetto, A. Orte, J. M. Alvarez-Pez and E. M. Talavera, Phys. Chem. Chem. Phys., 2011, 13, 1685-1694). Since these phenomena are more sensitive to anions than to cations, in this paper we have accounted for the influence of salts with the sodium cation in common, and the anion classified according to the empirical Hofmeister series, on the proton transfer rate constants of TG-II. We demonstrate that the presence of ions accelerates the rate of the ground-state proton-exchange reaction in the same order than ions that affect ion solvation in water. The combination of FLCS with a fluorophore undergoing proton transfer reactions in the ground state, along with the desirable feature of a pseudo-dark state when the dye is protonated, allows one unique direct determination of kinetic rate constants of the proton exchange chemical reaction.  相似文献   

7.
The hydrogen bonding and excited state proton transfer reactions between betacarboline, 9H-pyrido[3,4-b]indole, BC, and 1,1,1,3,3,3-hexafluoropropan-2-ol, HFIP, have been studied in the aprotic solvents cyclohexane and toluene by absorption, steady state and time resolved fluorescence measurements. On the basis of these results and those of previous works (Refs. [A. Sánchez-Coronilla, C. Carmona, M.A. Muñoz, M. Balón, Chem. Phys., 327 (2006) 70] and [A. Sánchez-Coronilla, M. Balón, M.A. Muñoz, C. Carmona, Chem. Phys. 344 (2008) 72]) two main fundamental conclusions can be drawn on the photophysical behaviour of BC. Thus, it is shown, for the first time, that the non-cyclic double hydrogen bond complexes formed through both nitrogen atoms of BC, DHB, can suffer, in their ground state, an isomerisation process. These adducts acquire a quinoid structure in cyclohexane, but maintain a dipolar zwitterionic structure in toluene. Moreover, it is concluded that the observed large Stokes shifted emission, around 520 nm, is not due, as it has been so far generally accepted, to the emission of a BC zwitterionic phototautomer, but to the intramolecular charge transfer, ICT, excited state emissions of the DHB hydrogen bond adducts.  相似文献   

8.
Free energy profiles for the proton transfer reactions in hydrogen‐bonded complex of phenol with trimethylamine in methyl chloride solvent are studied with the reference interaction site model self‐consistent field method. The reactions in both the electronic ground and excited states are considered. The second‐order Møller‐Plesset perturbation (MP) theory or the second‐order multireference MP theory is used to evaluate the effect of the dynamical electron correlation on the free energy profiles. The free energy surface in the ground state shows a discrepancy with the experimental results for the related hydrogen‐bonded complexes. To resolve this discrepancy, the effects of chloro‐substitutions in phenol are examined, and its importance in stabilizing the ionic form is discussed. The temperature effect is also studied. In contrast to the ground state, the ππ* excited state of phenol–trimethylamine complex exhibits the proton transfer reaction with a low barrier. The reaction is almost thermoneutral. This is attributed to the reduction of proton affinity of phenol by the ππ* electronic excitation. We further examine the possibility of the electron–proton–coupled transfer in the ππ* state through the surface crossing with the charge transfer type πσ* state. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

9.
The excited-state hydrogen-atom transfer (ESHAT) reaction of the 7-hydroxyquinoline(NH(3))(3) cluster involves a crossing from the initially excited (1)pipi(*) to a (1)pisigma(*) state. The nonadiabatic coupling between these states induces homolytic dissociation of the O-H bond and H-atom transfer to the closest NH(3) molecule, forming a biradical structure denoted HT1, followed by two more Grotthus-type translocation steps along the ammonia wire. We investigate this reaction at the configuration interaction singles level, using a basis set with diffuse orbitals. Intrinsic reaction coordinate calculations of the enol-->HT1 step predict that the H-atom transfer is preceded and followed by extensive twisting and bending of the ammonia wire, as well as large O-H...NH(3) hydrogen bond contraction and expansion. The calculations also predict an excited-state proton transfer path involving synchronous proton motions; however, it lies 20-25 kcal/mol above the ESHAT path. Higher singlet and triplet potential curves are calculated along the ESHAT reaction coordinate: Two singlet-triplet curve crossings occur within the HT1 product well and intersystem crossing to these T(n) states branches the reaction back to the enol reactant side, decreasing the ESHAT yield. In fact, a product yield of approximately 40% 7-ketoquinoline.(NH(3))(3) is experimentally observed. The vibrational mode selectivity of the enol-->HT1 reaction step [C. Manca, C. Tanner, S. Coussan, A. Bach, and S. Leutwyler, J. Chem. Phys. 121, 2578 (2004)] is shown to be due to the large sensitivity of the diffuse pisigma(*) state to vibrational displacements along the intermolecular coordinates.  相似文献   

10.
The photochemical behavior of the protonated simplest nitrosamine [NH2NO-H](+) has been addressed by means of the CASPT2//CASSCF methodology in conjunction with the ANO-L basis sets. The relative stability of the different tautomers, namely, (1) NH2NOH(+), (2) NH3NO(+), and (3) NH2NHO(+), has been considered, and the corresponding tautomerization transition states have been characterized. With respect to the most chemically relevant species, it has been found that NH2NOH(+) corresponds to a bound structure, while NH3NO(+) corresponds to an adduct between NH3 and NO(+) at both CASSCF and CASPT2 levels of theory. Vertical transition calculations and linear interpolations on the homolytic dissociation of NH3NO(+) in combination with previous results on neutral nitrosamine [J. Chem. Phys. 2006, 125, 164311] and neutral N,N-dimethylnitrosamine [J. Org. Chem. 2007, 72, 4741] indicate that, in acidic diluted solutions, the protonation of nitrosamine takes place on the excited surface. The N-N dissociation channels have been studied both in ground and first excited singlet state. An S1/S0 conical intersection is found to be responsible for the photostability of NH2NOH(+). On the contrary, NH3NO(+) is photochemically unstable as its first excited state is purely dissociative. The latter species is characterized by a twofold reactivity: the formation of nitrosyl cation (NO(+)) in the ground state and the photorelease of physiologically relevant nitric oxide radical (NO) in its first excited state.  相似文献   

11.
Schaniel D  Woike T  Delley B  Schefer J  Imlau M 《The Journal of chemical physics》2005,123(4):047101; author reply 047102
We discuss the computational results of the "Theoretical study of the photoinduced transfer among the ground state and two metastable states in [Fe(CN)5NO]2-" [J. Chem. Phys. 122, 074314 (2005)] with respect to our previously reported polarized absorption study on the metastable states SI and SII in Na2[Fe(CN)5NO]2H2O [D. Schaniel, J. Schefer, B. Delley, M. Imlau, and Th. Woike, Phys. Rev. B 66, 085103 (2002)].  相似文献   

12.
The phototautomerization mechanism of a model nitro enamine (NEA) chromophore (incorporated in the structure of a highly photolabile pesticide, tetrahydro-2-(nitromethylene)-2H-1,3-thiazine) has been studied using complete active space self-consistent field reaction path computations. The optically accessible 1pipi* excited state of NEA involves separation of charge and correlates diabatically with the ground state of the tautomerized acinitro imine (ANI) form. For optimum photostabilization, the 1pipi* state of NEA should be S1: in this case, the tautomer would be efficiently formed via a diabatic intramolecular proton-transfer pathway passing through an S1/S0 conical intersection, followed by a facile thermal back proton-transfer reaction. However, in NEA itself the lowest excited states correspond to nitro group 1npi* states, and there are additional surface crossings that provide a mechanism for populating the 1npi* manifold. The above results indicate that the high photolability observed for the pesticide [Kleier, D.; Holden, I.; Casida, J. E.; Ruzo, L. O. J. Agric. Food Chem. 1985, 33, 998-1000] has to be ascribed to photochemistry originating on the 1npi* manifold of states, populated indirectly from the 1pipi* state.  相似文献   

13.
The constrained variational Hartree-Fock method for excited states of the same symmetry as the ground state [Chem. Phys. Lett. 287, 189 (1998)] is combined with the effective local potential (ELP) method [J. Chem. Phys. 125, 081104 (2006)] to generate Kohn-Sham-type exact-exchange potentials for singly excited states of many-electron systems. Illustrative examples include the three lowest (2)S states of the Li and Na atoms and the three lowest (3)S states of He and Be. For the systems studied, excited-state ELPs differ from the corresponding ground-state potentials in two respects: They are less negative and have small additional "bumps" in the outer electron region. The technique is general and can be used to approximate excited-state exchange-correlation potentials for other orbital-dependent functionals.  相似文献   

14.
Recently, we have proposed a scheme for the calculation of nonadiabatic couplings and nonadiabatic coupling vectors within linear response time-dependent density functional theory using a set of auxiliary many-electron wavefunctions [I. Tavernelli, E. Tapavicza, and U. Rothlisberger, J. Chem. Phys. 130, 124107 (2009)]. As demonstrated in a later work [I. Tavernelli, B. F. E. Curchod, and U. Rothlisberger, J. Chem. Phys. 131, 196101 (2009)], this approach is rigorous in the case of the calculation of nonadiabatic couplings between the ground state and any excited state. In this work, we extend this formalism to the case of coupling between pairs of singly excited states with the same spin multiplicity. After proving the correctness of our formalism using the electronic oscillator approach by Mukamel and co-workers [S. Tretiak and S. Mukamel, Chem. Rev. (Washington, D.C.) 102, 3171 (2002)], we tested the method on a model system, namely, protonated formaldimine, for which we computed S(1)/S(2) nonadiabatic coupling vectors and compared them with results from high level (MR-CISD) electronic structure calculations.  相似文献   

15.
16.
We present a detailed CASSCF study of the mechanism of excited-state intramolecular proton transfer (ESIPT) in the o-hydroxyphenyl triazine class of photostabilizers. The valence-bond analysis of the ground state and the two pipi* excited states permits a simple chemical interpretation of the mechanistic information. Our results show that the barrier to enol-keto tautomerism on the ground-state adiabatic surface is high. Following photoexcitation to the charge-transfer state, the ESIPT is predicted to take place without a barrier. Radiationless decay to the ground state is associated with an extended seam of conical intersection, with a sloped topology lying parallel to the ESIPT path, which can be accessed at any point along the reaction path. Our results show that the triazine class of photostabilizers has the photochemical and photophysical qualities associated with exceptional photostability.  相似文献   

17.
In this work we analyze how the choice of the active space in the CASSCF (the complete-active-space multiconfiguration self-consistent-field method) and CASPT2 (the second-order perturbation theory based on the CASSCF reference wave function) calculations affects the computed potential energy curves (PECs) for the intramolecular proton transfer reaction in the ground state and the two lowest lying singlet excited states of 1-amino-3-propenal. As anticipated, the results revealed that, qualitatively, the proton transfer in the different states can be correctly described even by minimal active spaces, which include the orbitals involved in the electronic excitation of the considered state and the antibonding sigma orbital corresponding to the bond formed by the molecule with the migrating hydrogen atom. However, quantitatively, the relative energies of the two tautomers and the energy barriers computed at the CASSCF level change when the active space is increased, indicating importance of the dynamic electron correlation. Introducing the dynamic correlation effects via CASPT2 makes the calculated energy parameters more uniform among the different active spaces. The analysis suggested certain optimal active spaces for studying proton transfer reactions in systems similar to 1-amino-3-propenal. The PEC calculations for excited states showed that the results are sensitive to the molecular geometries used in the calculations, particularly near the transition point. ©1999 John Wiley & Sons, Inc. J Comput Chem 20: 1422–1431 (1999)  相似文献   

18.
Laser induced fluorescence (LIF) excitation spectra of molecular complexes of 1H-pyrrolo[3,2-h]quinoline (PQ) with methanol (n= 1, 2, 3) as well as vibrational spectra of their electronic ground state are reported. The latter have been recorded in the mid-infrared region by fluorescence depletion (FDIR). The only PQ.methanol(n) complex clearly identified in the LIF spectrum is the triply hydrogen-bonded cyclic 1 ratio 2 aggregate. Its stoichiometry has been proven by the femtosecond multiphoton ionization detected infrared measurements [J. Am. Chem. Soc., 2006, 128, 10 000]. The structure of the 1 ratio 2 cluster is determined by means of FDIR spectroscopy in combination with ab initio and DFT calculations. No fluorescence was detected that could be attributed to the 1 ratio 1 cluster. This behaviour of the 1 ratio 1 complex is explained in terms of rapid excited state double proton transfer followed by a non-radiative relaxation. The n= 3 and heavier clusters are fluorescent. Their electronic spectra overlap, preventing the selective measurement of the FDIR spectra of individual complexes.  相似文献   

19.
The proton‐transfer reaction in a model aromatic Schiff base, salicylidene methylamine (SMA), in the ground and in the lowest electronically‐excited singlet states, is theoretically analyzed with the aid of second‐order approximate coupled‐cluster model CC2, time‐dependent density functional theory (TD‐DFT) using the Becke, three‐parameter Lee–Yang–Parr (B3LYP) functional, and complete active space perturbation theory CASPT2 electronic structure methods. Computed vertical‐absorption spectra for the stable ground‐state isomers of SMA fully confirm the photochromism of SMA. The potential‐energy profiles of the ground and the lowest excited singlet state are calculated and four photophysically relevant isomeric forms of SMA; α, β, γ, and δ are discussed. The calculations indicate two S1/S0 conical intersections which provide non‐adiabatic gates for a radiationless decay to the ground state. The photophysical scheme which emerges from the theoretical study is related to recent experimental results obtained for SMA and its derivatives in the low‐temperature argon matrices (J. Grzegorzek, A. Filarowski, Z. Mielke, Phys. Chem. Chem. Phys. 2011 , 13, 16596–16605). Our results suggest that aromatic Schiff bases are potential candidates for optically driven molecular switches.  相似文献   

20.
用B3LYP, MP2和CASSCF方法, 采用cc-pVDZ和6-31++G**基组, 研究了硫代乙酰胺在基态和最低三态上消除硫化氢以及其它光解离反应, 并考虑了单个溶剂分子参与反应对质子迁移反应的影响, 得到了消除硫化氢反应的反应机理, 计算结果可以很好地解释实验结果. 进而用CASSCF方法计算了第一激发单态上的各驻点, 以及各交叉点. 计算结果表明, 在S1和T1态上发生除分子内转动以外的化学反应的可能性比较小, 当分子被激发到S2态上时, 将通过S2/S1交叉点到S1态, 在S1态上的分子有两条途径去活化, 通过S1/S0交叉点到热基态, 通过S1/T1交叉点系间窜越到T1态. 因而得出CH3CSNH2发生光解离反应的可能性不大. 基于此, 可将硫代酰胺结构引入蛋白或多肽中, 有望在不破坏分子整体结构的情况下对其进行光化学研究.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号