共查询到8条相似文献,搜索用时 0 毫秒
1.
IntroductionThediscoveryofthefirstcarbonnanotubes[1]hasattractedwideattentionandstimulatedextensivestudies[2 - 5 ].Thestudiesshowedthatthecarbonnanotubesexhibitsuperiormechanical,electronicandchemicalproperties.Onthemechanicalbehavior,thecarbonnanotubespossessexceptionallyhighstrength ,stiffnessandelasticmodulus.Theestimatemodulusofthecarbonnanotubemayreachashighas 1TPa.Itisthelargestofallknownmaterials.Thestrengthorstiffnessishigherthananyknownfiber[3].Thecarbonnanotubeareusedascompositemat… 相似文献
2.
A cohesive law for carbon nanotube/polymer interfaces based on the van der Waals force 总被引:2,自引:0,他引:2
L.Y. Jiang H. Jiang H. Gao B. Liu 《Journal of the mechanics and physics of solids》2006,54(11):2436-2452
We have established the cohesive law for interfaces between a carbon nanotube (CNT) and polymer that are not well bonded and are characterized by the van der Waals force. The tensile cohesive strength and cohesive energy are given in terms of the area density of carbon nanotube and volume density of polymer, as well as the parameters in the van der Waals force. For a CNT in an infinite polymer, the shear cohesive stress vanishes, and the tensile cohesive stress depends only on the opening displacement. For a CNT in a finite polymer matrix, the tensile cohesive stress remains the same, but the shear cohesive stress depends on both opening and sliding displacements, i.e., the tension/shear coupling. The simple, analytical expressions of the cohesive law are useful to study the interaction between CNT and polymer, such as in CNT-reinforced composites. The effect of polymer surface roughness on the cohesive law is also studied. 相似文献
3.
Explicit formulas are derived for the van der Waals (vdW) interaction between any two layers of a multi-walled carbon nanotube (CNT). Based on the derived formulas, an efficient algorithm is established for the buckling analysis of multi-walled CNTs, in which individual tubes are modeled as a continuum cylindrical shell. The explicit expressions are also derived for the buckling of double-walled CNTs. In previous studies by Ru (J. Appl. Phys. 87 (2000b) 7227) and Wang et al. (Int. J. Solids Struct. 40 (2003) 3893), only the vdW interaction between adjacent two layers was considered and the vdW interaction between the other two layers was neglected. The vdW interaction coefficient was treated as a constant that was not dependent on the radii of the tubes. However, the formulas derived herein reveal that the vdW interaction coefficients are dependent on the change of interlayer spacing and the radii of the tubes. With the increase of radii, the coefficients approach constants, and the constants between two adjacent layers are about 10% higher than those reported by Wang et al. (Int. J. Solids. Struct. 40 (2003) 3893). In addition, the numerical results show that the vdW interaction will lead to a higher critical buckling load in multi-walled CNTs. The effect of the tube radius on the critical buckling load of a multi-walled CNT is also examined. 相似文献
4.
Antonio Pantano 《Journal of the mechanics and physics of solids》2004,52(4):789-821
An effective continuum/finite element (FE) approach for modeling the structure and the deformation of single- and multi-wall carbon nanotubes (CNTs) is presented. Individual tubes are modeled using shell elements, where a specific pairing of elastic properties and mechanical thickness of the tube wall is identified to enable successful modeling with shell theory. The incorporation and role of an initial internal distributed stress through the thickness of the wall, due to the cylindrical nature of the tube, are discussed. The effects of van der Waals forces, crucial in multi-wall nanotubes and in tube/tube or tube/substrate interactions, are simulated by the construction of special interaction elements.The success of this new CNT modeling approach is verified by first comparing simulations of deformation of single-wall nanotubes with molecular dynamics results available in the literature. Simulations of final deformed configurations, as well strain energy histories, are in excellent agreement with the atomistic models for various deformations. The approach was then applied to the bending of multi-wall carbon nanotubes (MWNTs), and the deformed configurations were compared to corresponding high-resolution images from experiments. The proposed approach successfully predicts the experimentally observed wavelengths and shapes of the wrinkles that develop in bent MWNTs, a complex phenomenon dominated by inter-layer interactions. Presented results demonstrate that the proposed FE technique could provide a valuable tool for studying the mechanical behavior of MWNTs as single entities, as well as their effectiveness as load-bearing entities in nanocomposite materials. 相似文献
5.
Weipeng HU Zhen WANG Yulu HUAI Xiqiao FENG Wenqi SONG Zichen DENG 《应用数学和力学(英文版)》2022,43(10):1503-1514
Applied Mathematics and Mechanics - Solvent-free nanofluids hold promise for many technologically significant applications. The liquid-like behavior, a typical rheological property of solvent-free... 相似文献
6.
《Comptes Rendus Mecanique》2017,345(2):158-168
In this paper, we propose a new explicit analytical formula of the critical buckling load of double-walled carbon nanotubes (DWCNT) under axial compression. This formula takes into account van der Waals interactions between adjacent tubes and the effect of terms involving tube radii differences generally neglected in the derived expressions of the critical buckling load published in the literature. The elastic multiple Donnell shells continuum approach is employed for modelling the multi-walled carbon nanotubes. The validation of the proposed formula is made by comparison with a numerical solution. The influence of the neglected terms is also studied. 相似文献
7.
Single-walled carbon nanotubes (SWCNTs) are usually modeled as elastic tubes and their bending stiffness D is often related to their axial stretching modulus E (Young's modulus) as in mechanics of materials (i.e. D=EI where I is the moment of inertia of the tube). However, recent studies show that large discrepancies may exist when this relationship is used to predict Young's modulus of carbon nanotubes (CNTs) through bending dominated deformations. In the present paper, the bending stiffness of SWCNTs and some related issues are investigated by the combined use of the molecular-mechanics (M-M) model and the deformation mapping technique. Based on the analysis results, the contradictions mentioned above can be explained well. Furthermore, an analytical expression for the bending stiffness of SWCNTs is also presented. It shows that the bending stiffness of a SWCNT is approximately proportional to the cube of its radius which agrees well with the existing molecular dynamics simulation and continuum theory based results. 相似文献
8.
Carbon nanotubes (CNTs) based NEMS with electrostatic sensing/actuation may be employed as sensors, in situations where it is fundamental to understand their dynamic behaviour. Due to displacements that are large in comparison with the thickness and to the non-linearity of the electrostatic force, these CNT based NEMS operate in the non-linear regime. The knowledge of the modes of vibration of a CNT provides a picture of what one may expect from its dynamic behaviour not only in free, but also in forced vibrations. In this paper, the non-linear modes of vibration of CNTs actuated by electrostatic forces are investigated. For that purpose, a p-version finite element type formulation is implemented, leading to ordinary differential equations of motion in the time domain. The formulation takes into account non-local effects, which influence the inertia and the stiffness of CNTs, as well as the electrostatic actuation. The ordinary differential equations of motion are transformed into algebraic equations of motion via the harmonic balance method (HBM) and then solved by an arc-length continuation method. Several harmonics are considered in the HBM. The importance of non-local effects, combined with the geometrical non-linearity and with the action of the electrostatic force, is analysed. It is found that different combinations of these effects can result in alterations of the natural frequencies, variations in the degrees of softening or hardening, changes in the frequency content of the free vibrations, and alterations in the mode shapes of vibration. It is furthermore found that the small scale, here represented by the non-local theory, has an effect on interactions between the first and higher order modes which are induced by the geometrical and material non-linearities of the system. 相似文献