首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 15 毫秒
1.
We report first principles calculations to analyze the ruthenium adsorption and diffusion on GaN(0 0 0 1) surface in a 2×2geometry. The calculations were performed using the generalized gradient approximation (GGA) with ultrasoft pseudopotential within the density functional theory (DFT). The surface is modeled using the repeated slabs approach. To study the most favorable ruthenium adsorption model we considered T1, T4 and H3 special sites. We find that the most energetically favorable structure corresponds to the Ru- T4 model or the ruthenium adatom located at the T4 site, while the ruthenium adsorption on top of a gallium atom (T1 position) is totally unfavorable. The ruthenium diffusion on surface shows an energy barrier of 0.612 eV. The resultant reconstruction of the ruthenium adsorption on GaN(0 0 0 1)- 2×2 surface presents a lateral relaxation of some hundredth of Å in the most stable site. The comparison of the density of states and band structure of the GaN(0 0 0 1) surface without ruthenium adatom and with ruthenium adatom is analyzed in detail.  相似文献   

2.
M.D. Ganji 《Physics letters. A》2008,372(18):3277-3282
The adsorption of CO2 on the single-walled tungsten carbide nanotubes has been investigated employing density functional theory method. The center of a hexagon of tungsten and carbon atoms in sites on tungsten carbide nanotube surfaces is the most stable adsorption site for CO2 molecule, with a binding energy of −1.68 eV (−38.72 kcal/mol) and a WO binding distance of 1.95 Å. Furthermore, the adsorption of CO2 on the single-walled carbon nanotubes has been investigated. Our first-principles calculations predict that the CO2 adsorptive capacity of tungsten carbide nanotubes is about quadruple that of carbon nanotubes. This might have potential for greenhouse gas detection and bioremediation.  相似文献   

3.
Water molecule adsorption properties at the surface of InVO4 have been investigated using an ab initio molecular dynamics approach. It was found that the water molecules were adsorbed dissociatively to the three-fold oxygen coordinated V sites on the (0 0 1) surface. The dissociative adsorption energy was estimated to be 0.8-0.9 eV per molecule. The equilibrium distance between V and O of the hydroxyl -OH was almost the same as the V-O distance of tetrahedra VO4 in the InVO4 bulk crystal (1.7-1.8 Å).  相似文献   

4.
The validity of two formation mechanisms of ammonium silicofluoride (ASF), which are proposed to take place when a silicon surface is exposed to the vapor of HNO3/HF acid mixture is investigated. Of the two proposed mechanisms regarding the synthesis of ASF on silicon surface, validity of the first predicting the release of hydrofluosilicic acid (H2SiF6) at the intermediate stage is examined by FTIR spectroscopy and the second mechanism suggesting O2 release is investigated using the Winkler technique. IR absorbance bands of SiF62+ are observed on the fresh samples prepared at low (1/100) HNO3/HF volume fractions. No significant amount of oxygen is detected during the synthesis of ASF films on silicon surface by dry etching technique. These two observations together provide firmer support for the validity of the second mechanism.  相似文献   

5.
6.
The influence of H2 plasma treatment on the field emission properties of amorphous GaN (a-GaN) films is studied. It is found that the treatment makes little change to the surface morphology. The current density of the treated film decreases from 400 to 30 μA/cm2 at the applied field of about 30 V/μm. The treatment can reduce the defects in a-GaN films, and therefore the treatment results in the weakening of the tunneling emission of the a-GaN film at the high field region. The treatment also seems to change the conduction mechanism of the a-GaN film.  相似文献   

7.
The Monte Carlo method in its grand ensemble variant (GCMC) is used in combination with experimental data in order to characterize microporous carbons and obtain the optimal pore size distribution (PSD). In particular, the method is applied in the case of AX-21 carbon. Adsorption isotherms of CO2 (253 and 298 K) and H2 (77 K) up to 20 bar have been measured, while the computed isotherms resulted from the GCMC simulations for several pore widths up to 3.0 nm. For the case of H2 at 77 K quantum corrections were introduced with the application of the Feynman-Hibbs (FH) effective potential. The adsorption isotherms were used either individually or in a combined manner in order to deduce PSDs and their reliability was examined by the ability to predict the experimental adsorption isotherms. The combined approach was found to be capable of reproducing more accurately all the available experimental isotherms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号