首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two luminescence bands in the UV range were detected in crystalline α-quartz under electron beam excitation (6 kV, 3-5 μA). One band is situated at 5 eV and could be observed in pure samples. Its intensity increases with cooling below 100 K and undergoes saturation below 40 K alongside a slow growth with the time of irradiation at 9 K. The decay curve of the band at 5 eV contains two components, a fast (<10 ns) and a slow one in the range of 200 μs. The photoluminescence band at 5 eV with a similar temperature dependence was found in previously neutron-irradiated crystalline α-quartz. Therefore, the band at 5 eV was attributed to host material defects in both irradiation cases. The creation mechanism of such defects by electrons, the energy of which is lower than the threshold for a knock-out mechanism of defect creation, is discussed. Another band at 6 eV, containing subbands in different samples, appears in the samples containing aluminum, lithium and sodium ions. This luminescence is ascribed to a tunnel radiative transition in an association of (alkali atom)0-[AlO4]+ that is formed after the trapping of an electron and a hole by Li+ (or Na+) and AlO4.  相似文献   

2.
It is obtained that, as grown, non-irradiated stishovite single crystals possess a luminescence center. Three excimer pulsed lasers (KrF, 248 nm; ArF, 193 nm; F2, 157 nm) were used for photoluminescence (PL) excitation. Two PL bands were observed. One, in UV range with the maximum at 4.7±0.1 eV with FWHM equal to 0.95±0.1 eV, mainly is seen under ArF laser. Another, in blue range with the maximum at 3±0.2 eV with FWHM equal to 0.8±0.2 eV, is seen under all three lasers. The UV band main fast component of decay is with time constant τ=1.2±0.1 ns for the range of temperatures 16-150 K. The blue band decay possesses fast and slow components. The fast component of the blue band decay is about 1.2 ns. The slow component of the blue band well corresponds to exponent with time constant equal to 17±1 μs within the temperature range 16-200 K. deviations from exponential decay were observed as well and explained by influence of nearest interstitial OH groups on the luminescence center. The UV band was not detected for F2 laser excitation. For the case of KrF laser only a structure less tail up to 4.6 eV was detected. Both the UV and the blue bands were also found in recombination process with two components having characteristic time about 1 and 60 μs. For blue band recombination luminescence decay is lasting to ms range of time with power law decay ∼t−1.For the case of X-ray excitation the luminescence intensity exhibits strong drop down above 100 K. such an effect does not take place in the case of photoexcitation with lasers. The activation energies for both cases are different as well. Average value of that is 0.03±0.01 eV for the case of X-ray luminescence and it is 0.15±0.05 eV for the case of PL. So, the processes of thermal quenching are different for these kinds of excitation and, probably, are related to interaction of the luminescence center with OH groups.Stishovite crystal irradiated with pulses of electron beam (270 kV, 200 A, 10 ns) demonstrates a decrease of luminescence intensity excited with X-ray. So, irradiation with electron beam shows on destruction of luminescent defects.The nature of luminescence excited in the transparency range of stishovite is ascribed to a defect existing in the crystal after growth. Similarity of the stishovite luminescence with that of oxygen deficient silica glass and induced by radiation luminescence of α-quartz crystal presumes similar nature of centers in those materials.  相似文献   

3.
Time-resolved emission and excitation spectra and luminescence decay kinetics were studied at 150-300 K for the green emission of PbWO4:Mo crystals. It was found that the slow (μs-ms) decay component observed under excitation in the defect-related absorption region (around 3.8-3.9 eV) arises from the G(II) emission which appears at the tunneling recombination of optically created electron and hole centers. The study of the emission decay kinetics at different temperatures and excitation intensities allowed concluding that both the monomolecular and the bimolecular tunneling recombination process can be stimulated in the mentioned energy range. The monomolecular process takes place in the isolated spatially correlated pairs of electron and hole centers produced without release of electrons into the conduction band. The bimolecular process takes place in the pairs of randomly distributed centers created at the trapping of free electrons from the conduction band. The formation of electron centers under irradiation in the defect-related absorption region was investigated by the electron spin resonance (ESR) and thermally stimulated luminescence (TSL) methods. The possibility of various photo-thermally stimulated defects creation processes, which take place with and without release of free electrons into the conduction band, was confirmed.  相似文献   

4.
Luminescence of very small samples of single crystals of coesite and stishovite has been studied. The spectra were detected under ionizing radiation (X-ray and electron beam) and the decay kinetics of cathodoluminescence in the range of time from 10 ns to 3 ms was measured. The coesite luminescence possesses a broad band at 3 eV with exponential decay about 680 μs at 80 K. The nature of this luminescence was explained as a self-trapped exciton creation in tetrahedron framework. The stishovite luminescence possesses two bands—blue (2.8 eV) and UV (4.7 eV). The UV band intensity grows more than 20 times with irradiation dose from initial level. This shows that the corresponding luminescence centers could be induced by the radiation. The decay of the UV band possesses a fast and a slow component. The determination of the fast decay parameters is beyond the capabilities of our apparatus (less than 10 ns), whereas the slow decay of the UV is non-exponential and takes place in the range of hundreds of microsecond. The blue band decay kinetics can be well approximated by power law ∼t−2, which may correspond to recombination of defects created by radiation. The stishovite single crystal luminescence is very similar to that of germanium dioxide single crystal of rutile structure. The nature of the stishovite luminescence is explained as recombination of defects created by irradiation in octahedron-structured lattice.  相似文献   

5.
Undoped β-Ga2O3 single crystals were grown using the floating zone technique under a pressure of 2 atm oxygen. Luminescence spectra of the crystals were measured with steady-state X-ray (<15 keV) and UV (258 nm, 4.8 eV) sources. The X-ray excitation produced a spectrum with a peak at 390 nm (3.2 eV) whereas the UV excited spectrum had a peak at 430 nm (2.9 eV). The luminescence rise and decay were also examined by using picosecond X-ray and sub-picosecond UV pulses. It was found that the X-ray pulse excitation gave a slower rise and a faster decay of the luminescence compared with the UV pulse excitation. These results suggest that X-ray excitation generates high energy electrons, building up luminescent states until those electrons lose their kinetic energies, giving rise to the formation of local hot spots in the gallium oxide crystals.  相似文献   

6.
Characteristics of the defects created at 4.2 K by the UV-irradiation of CsI : Tl crystals in the Tl+-related absorption bands (by photons of 5.8-4.8 eV energy) have been studied. The dependences of the intensities of the thermally stimulated luminescence peaks appearing near 60, 90 and 125 K and of the recombination luminescence photostimulation bands peaking at 2.35, 1.92, 1.33 and 0.89 eV on the irradiation energy and duration, uniaxial stress and thallium concentration have been examined. The mechanisms of the processes, responsible for the appearance of the intense visible (2.55 and 2.25 eV) luminescence of excitons localized near Tl+ ions and creation of defects pairs of the type of Tl0-VK and Tl+-VK with various distances between the components, have been discussed.  相似文献   

7.
We have used deep level transient spectroscopy (DLTS), and Laplace-DLTS to investigate the defects created in antimony doped germanium (Ge) by sputtering with 3 keV Ar ions. Hole traps at EV+0.09 eV and EV+0.31 eV and an electron trap at EC−0.38 eV (E-center) were observed soon after the sputtering process. Room temperature annealing of the irradiated samples over a period of a month revealed a hole trap at EV+0.26 eV. Above room temperature annealing studies revealed new hole traps at EV+0.27 eV, EV+0.30 eV and EV+0.40 eV.  相似文献   

8.
Ten layers of self-assembled InMnAs quantum dots with InGaAs barrier were grown on high resistivity (1 0 0) p-type GaAs substrates by molecular beam epitaxy (MBE). The presence of ferromagnetic structure was confirmed in the InMnAs diluted magnetic quantum dots. The ten layers of self-assembled InMnAs quantum dots were found to be semiconducting, and have ferromagnetic ordering with a Curie temperature, TC=80 K. It is likely that the ferromagnetic exchange coupling of sample with TC=80 K is hole mediated resulting in Mn substituting In and is due to the bound magnetic polarons co-existing in the system. PL emission spectra of InMnAs samples grown at temperature of 275, 260 and 240 °C show that the interband transition peak centered at 1.31 eV coming from the InMnAs quantum dot blueshifts because of the strong confinement effects with increasing growth temperature.  相似文献   

9.
Synthesis and luminescence properties of Li3NbO4 oxides by the sol-gel process were investigated. The products were characterized by the X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL) spectroscopy and absorption spectra. The PL spectra excited at 247 nm have a broad and strong blue emission band maximum at 376 nm, corresponding to the self-activated luminescence of the niobate octahedra group [NbO6]7−. The optical absorption spectra of the samples sintered at temperatures of 600 and 700 °C exhibited the band-gap energies of 4.0 and 4.08 eV.  相似文献   

10.
This paper investigates the short-living absorption and the emission of CsI(Na) under a pulsed electron beam (Еe=0.25 MeV, t1/2=15 ns and W=0.003…0.16 J/cm2). The bands of singlet self-trapped excitons, as well as Na0 and Vk color centers have been detected in the transient absorption spectrum of CsI(Na). It has been found that the activator luminescence spectrum, peaking at 3.0 eV, fits a Gaussian (Em=3.0 eV and FWHM=0.44±0.02 eV at 80 K) and remains the same at different time delays within 10−8-10−3 s. The decay kinetics of the 3.0 eV emission has one nanosecond exponential component and two microsecond ones with time constants 1.0 and 3.0 μs, which remain unchanged within 78-150 K. It is concluded that the activator emission is due to the radiative annihilation of sodium-perturbed two halide excitons from the non-relaxed singlet state. The pathways of such excitons creation are discussed.  相似文献   

11.
An organo-metallic complex, [(CH3)4N][Ni(dmit)2] (dmit2− = (1,3-dithiole-2-thione-4,5-dithiolate), abbreviated as MeNi, is synthesized. The nonlinear optical absorption properties of MeNi dissolved in acetone have been studied using the open-aperture Z-scan technique with 40 ps pulse width at 1064 nm and 1 ns, 15 ns pulse width at 1053 nm, respectively. Strong saturable absorption has been found when the sample solution is irradiated by 40 ps and 1 ns laser pulses. While irradiated with 15 ns laser pulse, a stronger reverse saturable absorption has been found. The nonlinear optical absorption coefficients are −1.03 × 10−11 m/W, −1.85 × 10−11 m/W and 3.84 × 10−10 m/W, respectively. The mechanism responsible for the difference between the results is analyzed. All the results suggest that this material may be a promising candidate for the application to laser pulse compression in the near-infrared waveband.  相似文献   

12.
We study the electrical properties and emission mechanisms of Zn-doped β-Ga2O3 film grown by pulsed laser deposition through Hall effect and cathodoluminescence which consist of ultraviolet luminescence (UV), blue luminescence (BL) and green luminescence (GL) bands. The Hall effect measurements indicate that the carrier concentration increases from 7.16×1011 to 6.35×1012 cm−3 with increasing a nominal Zn content from 3 to 7 at%. The UV band at 272 nm is not attributed to Zn dopants and ascribed as radiative electron transition from conduction band to a self-trapped hole while the BL band is attributable to defect level related to Zn dopant. The BL band has two emission peaks at 415 and 455 nm, which are ascribed to the radiative electron transition from oxygen vacancy (VO) to valence band and recombination of a donor–acceptor pair (DAP) between VO donor and Zn on Ga site (ZnGa) acceptor, respectively. The GL band is attributed to the phonon replicas’ emission of the DAP. The acceptor level of ZnGa is estimated to be 0.26 eV above the valence band maximum. The transmittance and absorption spectra prove that the Zn-doped β-Ga2O3 film is a dominantly direct bandgap material. The results of Hall and cathodoluminescence measurements imply that the Zn dopant in β-Ga2O3 film will form an acceptor ZnGa to produce p-type conductivity.  相似文献   

13.
We investigated luminescence decay kinetics in single-walled carbon nanotubes in large bundles excited by femtosecond pulses. The time constant of luminescence decay becomes longer with decrease in photon energy: 40 fs at 1.2 eV and 380 fs at 0.6 eV. This behavior is explained by exciton energy transfer from an excited to neighboring tubes.  相似文献   

14.
We study the aggregation of oxygen dipoles well dispersed in a CaF2 crystal upon annealing at temperatures ranging from 370 to 420 K. The concentration of oxygen dipoles is monitored by measuring the intensity of the ionic thermocurrent peak as well as by absorption and luminescence spectroscopies. Results from three methods agree within experimental error and yield an activation energy of (1.2±0.1) eV for the diffusion of isolated oxygen centres in the crystal.  相似文献   

15.
The optical absorption (OA) and photoluminescence (hereafter referred to as luminescence) studies were made on CaF2:Dy:Pb:Na single crystals (Dy—0.005 at%, Pb—0.188 at% and Na—0.007 at%) before and after γ-irradiation. The unirradiated crystal exhibited a strong OA band around 6.36 eV attributed to the ‘A’ band absorption of Pb2+ ions. The γ-irradiated crystal exhibited OA bands around 2.06, 3.28, 3.75 (broad shoulder) and 2.48 eV. The first three bands could be tentatively attributed to MNa centre when compared with that of the coloured CaF2:Na. The origin of 2.48 eV band was not explicitly known. Luminescence emission and excitation of Pb2+ and Dy3+ ions were negligible in the unirradiated crystal. Irradiated crystal exhibited a strong excitation spectrum with overlapping bands, due to different colour centres, in the UV-vis region for the 2.15 eV emission characteristic of Dy3+ ion. When excited, the absorbed energy (may be a part) was transferred from a colour centre to nearby Dy3+ ions and Dy3+ characteristic emission was observed. Exciting the irradiated crystal around 3.28 eV yielded emission at 2.56, 2.15 and 1.76 eV. The first two emission bands were due to Dy3+ ions. The excitation spectrum for the 1.76 eV emission showed two prominent bands around 2.02 and 3.08 eV and hence the emission was attributed to the MNa centre. The luminescence mechanism was described.  相似文献   

16.
Well-crystallized 250 nm-thick SrTiO3 thin films on fused-quartz substrate were prepared by pulsed laser deposition. The band-gap of SrTiO3 thin film by transmittance spectra is equal to 3.50 eV, larger than 3.22 eV for the bulk crystal. The nonlinear optical properties of the films were examined with picosecond pulses at 1.064 μm excitation. A large two-photon absorption (TPA) with absorption coefficient of 87.7 cm/GW was obtained, larger than 51.7 cm/GW for BaTiO3 thin films. The nonlinear refractive index n2 is equal to 5.7×10−10 esu with a negative sign, larger than 0.267×10−11 esu for bulk SrTiO3. The large TPA is attributed to intermediate energy levels introduced by the grain boundaries, and the optical limiting behaviors stemming from both TPA and negative nonlinear refraction were also discussed.  相似文献   

17.
Silica glass with SnO2 nanocrystals and Er3+ ions are prepared by the sol-gel route and treatment above 1000 °C. Transmission electron microscopy evidences a homogeneous dispersion of nanoclusters 4-6 nm in size in the amorphous silica matrix. Photoluminescence spectra excited at 3.5 eV, outside erbium transitions, show an inhomogeneous spectral distribution of light emission from interface defects, in the range 1.9-2.4 eV, resonant with transitions of erbium ions. The analysis of kinetics and temperature dependence of luminescence allows to quantify the efficiency of the energy transfer channel between nanoclusters and erbium ions.  相似文献   

18.

The transient absorption spectra and kinetics were studied for undoped, lead doped and high purity SrTiO 3 single crystals. The pulsed electron beam induced transient absorption is studied in all crystals. The strong absorption at 0.8 v eV was observed only in high purity SrTiO 3 . This absorption is suggested to arise from intrinsic electron polaron. The bound electron polarons are likely responsible for absorption band at 1.4 v eV. The main luminescence band under excitation pulse is observed at 2.75 v eV. The luminescence decay is faster than that of transient absorption.  相似文献   

19.
Here, we have examined the role of capping agent on the optical properties of CdS nanoparticles by steady-state and time-resolved photoluminescence (PL) spectroscopy. The estimated particles sizes are 3.45, 2.5 and 2.39 nm for uncapped, capped with silica (SiO2) and thiosalicylic acid (TSA), respectively. The absorption and emission spectra show a clear blue shift to shorter wavelengths in presence of TSA- and SiO2-capped nanoparticles. It is found that the average decay time 〈τ〉 are 6.24, 4.54 and 2.84 ns for uncapped, capped with SiO2 and TSA nanoparticles, respectively. Our analysis suggests that the hole or the electron is trapped on thiol molecule of TSA or hydroxyl group of SiO2, then radiative recombination of the electron and hole is delayed, resulting in strong quenching of PL efficiency.  相似文献   

20.
The nonlinear optical properties of an azo-based dye were investigated using Z-scan technique employing 38 ps pulses at 532 and 1064 nm, and 6 ns laser pulses at 532 nm. Large nonlinear absorption and nonlinear refraction were observed at both ps and ns 532 nm in the azoic dye. When excited at ps 1064 nm, this dye displayed a large two-photon absorption cross-section (σ2=1810 GM). Meanwhile, the optical nonlinearity mechanism was discussed in terms of molecular structure, excitation wavelength, and pulse width.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号