首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Polycrystalline La0.57Nd0.1Pb0.33Mn0.8Ti0.2O3 (LNPMT) is prepared by the solid-state reaction technique. The formation of single phase material was confirmed by X-ray diffraction studies, and it was found to be a rhombohedral phase at room temperature. The impedance plane plot shows semicircle arcs at different temperatures and an electrical equivalent circuit has been proposed to explain the impedance results. The frequency dependent conductivity spectra follow the universal power law. The activation energy deduced from analysis of the imaginary part of electric modulus and imaginary impedance is found to be ∼75 meV. Such a value of activation energy indicates that the conduction mechanism for the sample is due to electron hopping. The imaginary part of the electric modulus suggests that the relaxation describes the same mechanism at various temperatures.  相似文献   

2.
杨昌平  李旻奕  宋学平  肖海波  徐玲芳 《物理学报》2012,61(19):197702-197702
本文研究了在真空、空气和氧气中烧结制备的三种 CaCu3Ti4O12陶瓷材料的介电特性. 交流阻抗测量结果表明在10—300 K温度范围, 三种样品的介电温谱中均出现三个平台, 其电阻实部和电容虚部在相应温度出现损耗峰, 真空条件烧结的样品具有较高的介电平台和较明显的电阻实部与电容虚部峰值, 表明氧含量和氧空位对CaCu3Ti4O12的介电性质具有重要影响, 介电温谱出现的三个平台分别源于晶粒、晶界及氧空位陷阱.温谱分析表明晶粒的激活能与烧结气氛有较大关系,氧空位引起的电子短程跳跃及跳跃产生的极化子是晶粒电导和电容的主要起源.氧空位陷阱的激活能基本与烧结气氛无关,约为0.46 eV. 氧空位对载流子的陷阱作用是CaCu3Ti4O12 低频高介电常数的重要起源.  相似文献   

3.
We have made a first principles study to investigate density of states, band structure, the dielectric function and absorption spectra of wurtzite Mg 0.25 Zn 0.75 O. The calculation is carried out in a-axis and c-axis strain changing in the range from 0.3 to -0.2 in intervals of 0.1. The results calculated from density of states show that the bottom of conduction band is always dominated by Zn 4s and the top of valence band is always dominated by O 2p in a-axis and c-axis strain. Zn 4s will shift to higher energy range when a-axis strain changes in the range from 0.3 to 0, and then shift to lower energy range when a-axis strain changes in the range from 0 to -0.2. But Zn 4s will always shift to higher energy range when c-axis strain changes in the range from 0.3 to -0.2. The variations of band gap calculated from band structure and absorption spectra are also investigated, which are consistent with the results obtained from density of states. In addition, we analyse and discuss the imaginary part of the dielectric function ε 2 .  相似文献   

4.
The results of first principles calculations of the electronic band structure, density of states and frequency dependent dielectric functions of LiAlTe2, LiGaTe2 and LiInTe2 chalcopyrite crystals are reported. The calculations have been carried out within the density functional theory using norm-conserving pseudopotentials and a plane-wave basis. The peculiarities of the imaginary part ε2(ω) of the complex permittivity are discussed and interpreted on the basis of the obtained band spectra. Our calculations show that the Ga-containing compound is characterized by the largest optical anisotropy compared to Al- and In-containing compounds and, therefore, is the most promising candidate for nonlinear optical applications among considered crystals.  相似文献   

5.
The results of the femtosecond optical heterodyne detection of optical Kerr effect at 805 nm with the 80 fs ultrafast pulses in amorphous Ge10As40S30Se20 film is reported in this paper. The film shows an optical non-linear response of 200 fs under ultrafast 80 fs-pulse excitation, and the values of real and imaginary parts of non-linear susceptibility χ(3) were 9.0×10−12 and −4.0×10−12 esu, respectively. The large third-order non-linearity and ultrafast response are attributed to the ultrafast distortion of the electron orbits surrounding the average positions of the nucleus of Ge, As, S and Se atoms. This Ge10As40S30Se20 chalcogenide glass would be expected as a promising material for optical switching technique.  相似文献   

6.
The non-resonant third-order non-linear optical properties of amorphous Ge20As25Se55 films were studied experimentally by the method of the femtosecond optical heterodyne detection of optical Kerr effect. The real and imaginary parts of complex third-order optical non-linearity could be effectively separated and their values and signs could be also determined, which were 6.6 × 10−12 and −2.4 × 10−12 esu, respectively. Amorphous Ge20As25Se55 films showed a very fast response in the range of 200 fs under ultrafast excitation. The ultrafast response and large third-order non-linearity are attributed to the ultrafast distortion of the electron orbitals surrounding the average positions of the nucleus of Ge, As and Se atoms. The high third-order susceptibility and a fast response time of amorphous Ge20As25Se55 films makes it a promising material for application in advanced techniques especially in optical switching.  相似文献   

7.
The dielectric properties of LiMn2O4, LiMn1.6Ti0.4O4 and LiMn1.5Ni0.5O4 powders, synthesized by sol-gel method, were determined by analyzing the low-loss region of the electron energy-loss spectroscopy (EELS) spectrum in a transmission electron microscope. From these data, the optical joint density of states (OJDS) was obtained by Kramers-Kronig analysis. Since maxima observed in the OJDS spectra are assigned to interband transitions above the Fermi level, these spectra can be interpreted on the basis of calculated density of states (DOS), carried out with the CASTEP code. Experimental and theoretical results are in good agreement.  相似文献   

8.
New glasses have been synthesized in a multicomponent system based on indium fluoride. Samples of a few mm in thickness were obtained. They are transparent and homogeneous. Main physical properties such as density, characteristic temperatures, density, thermal expansion and refractive index have been measured. The evolution versus composition is reported for samples with the formula: (35−x) InF3-xGaF3-10YF3-25PbF2-15CaF2-15ZnF2. Tg lies between 260 and 296 °C while melting starts around 480 °C. Glass samples are stable at room temperature. By comparison with other standard fluoride glasses, they exhibit higher refractive index and density.  相似文献   

9.
In the last years many insulating and semiconducting materials activated with rare-earth elements were found to exhibit phosphorescence and thermoluminescence properties, and are attracting increasing interest due to the variety of application of long-lasting phosphors. In this work we studied the phosphorescence decay and thermoluminescence properties of CaGa2S4:Eu2+ as a function of temperature in the 9-325 K range. The comparison between spectra recorded as a function of time delay from the excitation pulse at different temperatures indicates that long-lasting emissions peaked at about 2.2 eV occurs at Eu2+ sites. Thermoluminescence glow curve is characterized by five components at 69, 98, 145, 185 and 244 K. Experimental data are discussed in the framework of generalized order of kinetic model and allow to estimate the activation energies of trapping defects. The origin of glow components at 69, 98, 145 and 244 K is correlated to trapping defects induced by Eu2+ doping, while the component at 185 K is attributed to a continuous distribution of defects.  相似文献   

10.
Structural, electrical, and magnetic properties of Ni1−xZnxFe2O4 (x=0.2, 0.4) samples sintered at various temperatures have been investigated thoroughly. The bulk density of the Ni0.8Zn0.2Fe2O4 samples increases as the sintering temperature (Ts) increases from 1200 to 1300 °C and above 1300 °C the bulk density decreases slightly. The Ni0.6Zn0.4Fe2O4 samples show similar behavior of changes to that of Ni0.8Zn0.2Fe2O4 samples, except that the bulk density is found to be the highest at 1350 °C. The DC electrical resistivity, ρ(T)ρ(T), decreases as the temperature increases indicating that the samples have semiconductor-like behavior. As the Zn content increases, the Curie temperature (Tc), resistivity, and the activation energy decrease while the magnetization, initial permeability, and the relative quality factor (Q) increases. A Hopkinson peak is obtained near Tc in the real part of the initial permeability vs. temperature curves. The ferrite with higher permeability has a relatively lower resonance frequency. The initial permeability and magnetization of the samples has been found to correlate with density, average grain sizes. Possible explanation for the observed structural, magnetic, and changes of resistivity behavior with various Zn content are discussed.  相似文献   

11.
The magnetic moment of the Mn impurities was obtained from magnetization measurements of Y ( Ni 1 - x Mn x ) 2 B 2 C as a function of the concentration x less than 0.15. Using the coherent potential approximation and starting from 3 d density of states, obtained from the first principles calculations, the magnetic moments are obtained within a two sublattice model. For adequately estimated values of the Coulomb interactions U, the position of the energy level of Mn and adopting values for the intersublattice hybridization term, a qualitative agreement with the observed experimental data is obtained. Received 23 April 2001 and Received in final form 29 October 2001  相似文献   

12.
The oxygen hyperstoichiometry of K2NiF4-type La2Ni0.9Fe0.1O4+δ, studied by thermogravimetric analysis and coulometric titration in the oxygen partial pressure range 6×10−5-0.7 atm at 923-1223 K, is considerably higher than that of undoped lanthanum nickelate. The p(O2)-T-δ diagram of iron-doped lanthanum nickelate can be adequately described by introducing point-defect interaction energy in the concentration-dependent part of defect chemical potentials and accounting for the site-exclusion effects. The critical factors affecting the equilibrium oxygen incorporation process include coulombic repulsion of interstitial anions, trapping of the p-type electronic charge carriers by iron, and interaction between Fe3+ and holes localized on nickel cations. Due to low chemical expansion of La2Ni0.9Fe0.1O4+δ lattice, the thermodynamic functions governing oxygen intercalation, site-blocking factors and hole mobility are all independent of the defect concentrations. The predominant 3+ state of iron cations under oxidizing conditions was confirmed by the Mössbauer spectroscopy. The stability of La2NiO4-based phase in reducing atmospheres is essentially unaffected by doping.  相似文献   

13.
Thermally stimulated current (TSC) measurements with current flowing perpendicular to the layers were carried out on Tl2Ga2Se3S layered single crystals in the temperature range of 10-260 K. The experimental data were analyzed by using different methods, such as curve fitting, initial rise and isothermal decay methods. The analysis revealed that there were three trapping centers with activation energies of 12, 76 and 177 meV. It was concluded that retrapping in these centers was negligible, which was confirmed by the good agreement between the experimental results and the theoretical predictions of the model that assumes slow retrapping. The capture cross section and the concentration of the traps have been also determined. An exponential distribution of electron traps was revealed from the analysis of the TSC data obtained at different light illumination temperatures. This experimental technique provided values of 10 and 88 meV/decade for the traps distribution related to two different trapping centers.  相似文献   

14.
Polycrystalline BaCo1/2W1/2O3 (BCW) is prepared by the solid-state reaction technique. The X-ray diffraction study of the compound at room temperature reveals the monoclinic phase. The field dependence of the dielectric constant and the conductivity are measured in the frequency range from 50 Hz to1 MHz and in the temperature range from 300 to 413 K. An analysis of the real and imaginary parts of the dielectric permittivity with frequency is performed. The frequency-dependent maxima in the imaginary impedance are found to obey an Arrhenius law with an activation energy=0.86 eV. The frequency-dependent electrical data are also analysed in the framework of the conductivity and modulus formalisms.  相似文献   

15.
Two methods—the solid-phase high-temperature (1300 °C) and the liquid-phase low-temperature (750 °C) routes—were used to synthesize the complex oxide La1.25Sr0.75MnCoO6, which has the structure of rhombohedral perovskite and is characterized by a disordered distribution of Mn and Co in structural sites. It was found by means of X-ray absorption near edge spectroscopy (XANES) at the K-edge that mixed valence states of Co2+/Co3+ and Mn3+/Mn4+, exist in both phases. Measurements of dc magnetization and real (χ′) and imaginary (χ″) parts of the ac susceptibility showed that the magnetic properties of these oxides are determined by a ferromagnetic transition at TC=217 K and a frequency-dependent transition at Tg<100 K. The high frequency dependence of Tg is indicative of the cluster-glass behavior of La1.25Sr0.75MnCoO6 (7 5 0) at T<TC within the ferromagnetic state.  相似文献   

16.
In this work, we report the optical properties of bulk Se93−XZn2Te5InX (X=0, 2, 4, 6 and 10) chalcogenide glasses. Refractive index, extinction coefficient, real dielectric constant (ε′), imaginary dielectric constant (ε″), absorption coefficient (α) and energy band gap were obtained from analysis of common range (250-1100 nm) UV/Visible transmittance spectrum. Besides, transmission percentages were obtained from FTIR spectra in wave number range 4000-400 cm−1.The concentration dependence structural phenomena have been explained with help of average coordination 〈z〉.  相似文献   

17.
The electronic structures of CaCu3Mn4O12 and CaCu3Ti4O12 are investigated from HF SCF LCAO calculation. In CaCu3Mn4O12, the band and the density of states show a spin asymmetric ferrimagnetic character with a small energy gap. The Mn spin is anti-aligned with the Cu spin, and the total spin moment is 9 μB. Our calculation correctly reproduces the observed antiferromagnetic insulating character of CaCu3Ti4O12. The gap in the band structure, which is 2.15 eV, reasonably agrees with the experimental value 1.5 eV. The electron density populations at different planes show clearly that the electron density has symmetric character. A tilted Mn(Ti) orbital implies a typical tilted three-dimensional network of MnO6 (TiO6) octahedra due to doping of the Jahn–Teller ion Cu. There is no covalency between Ca, Cu and Mn(Ti) atoms. In contrast, there are stronger bonds and somewhat likely covalency between Cu and O atoms, and also between Mn(Ti) and O atoms.  相似文献   

18.
Solid solution of (1−x)Na0.5Bi0.5TiO3-xBaTiO3 is investigated in the composition range 0.00≤x≤0.10. It is shown that the system exhibits rhombohedral structure up to x=0.055 and then becomes ‘nearly cubic’ for x≥0.06. Temperature dependent dielectric measurements reveals three peaks in the imaginary part of the dielectric constant for compositions exhibiting rhombohedral as well as ‘nearly cubic’ structures. The first of these three peaks exhibits Vogel-Fulcher type relaxation behaviour.  相似文献   

19.
The nanocrystalline Ni0.53Cu0.12Zn0.35Fe1.88O4 and BaTiO3 powders were prepared using Microwave-Hydrothermal (M-H) method at 160 °C/45 min. The as synthesized powders were characterized using the X-ray diffraction (XRD) and Transmission Electron Microscope (TEM). The size of the powders that were synthesized using M-H system was found to be ∼30 and ∼50 nm for ferrite phase and ferroelectric phases, respectively. The powders were densified using microwave sintering method at 900 °C/30 min. The ferrite and ferroelectric phases were observed from XRD and morphology of the composites was observed with the Scanning Electron Microscope (SEM).The magnetic hysteresis loops were recorded using the Vibrating Sample Magnetometer (VSM).The frequency dependence of real (μ′) and imaginary (μ″) parts of permeability was measured in the range of 1 MHz-1.8 GHz. The permeability decreases with an increase of BaTiO3 content at 1 MHz. The transition temperature (TC) of ferrite was found to be 245 °C. The TC of composite materials decreases with an increase in BaTiO3 content.  相似文献   

20.
In order to investigate the pressure effect on the magnetism in the layered cobaltites, positive muon spin rotation and relaxation μ+SR experiments have been carried out up to 1.3 GPa using c-aligned polycrystalline samples of [Ca2CoO3]0.62[CoO2] and [Ca2Co4/3Cu2/3O4]0.62[CoO2]. A transverse field μ+SR experiment indicates that the transition temperature to an incommensurate spin density wave IC-SDW state is independent of hydrostatic pressure up to 1.3 GPa for the both compounds. Furthermore, there are no changes in the spontanious muon precession frequency in zero field at 5 K even under 1.3 GPa. These results strongly suggest that the IC-SDW exists not in the rocksalt-type block ([Ca2CoO3] and/or [Ca2Co4/3Cu2/3O4]) but in the CoO2 plane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号