首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Symmetry protected topological states (SPTs) have the same symmetry and the phase transition between them are beyond Landau?s symmetry breaking formalism. In this paper we study (1) the critical theory of phase transition between trivial and non-trivial SPTs, and (2) the relation between such critical theory and the gapless boundary theory of SPTs. Based on examples of SO(3)SO(3) and SU(2)SU(2) SPTs, we propose that under appropriate boundary condition the critical theory contains the delocalized version of the boundary excitations. In addition, we prove that the boundary theory is the critical theory spatially confined between two SPTs. We expect these conclusions to hold in general and, in particular, for discrete symmetry groups as well.  相似文献   

2.

Objective

The objective was to determine imaging features that distinguish small (≤3cm) solid pancreatic adenocarcinoma, neuroendocrine tumor (NET) and solid pseudopapillary tumor (SPT) on gadoxetic-acid-enhanced magnetic resonance imaging (MRI) and diffusion-weighed imaging (DWI).

Materials and methods

Twenty-four adenocarcinomas, 10 NETs and 8 SPTs were retrospectively included. Two radiologists analyzed morphologic features, signal intensity of the tumors on MR images including DWI (b=800) and dynamic enhancement pattern with consensus. Tumor-to-parenchyma ratio and tumor apparent diffusion coefficients (ADCs) were quantitatively assessed.

Results

All adenocarcinomas had an ill-defined margin and irregular shape, and more frequently had pancreatic duct dilatation compared with other tumors (P<.05). All SPTs and all but one of the adenocarcinomas (95.8%) had no arterial enhancement with progressively increased enhancement, whereas seven NETs (70%) had arterial enhancement with progressively decreased enhancement (P<.01). The mean value of tumor-to-parenchyma ratio on arterial and portal phases was significantly higher for NETs, and the mean value of tumor ADCs was significantly lower for SPTs than for other tumors (P<.05).

Conclusions

Gadoxetic-acid-enhanced MRI may aid in differentiation between small adenocarcinomas, NETs and SPTs based on morphologic features with dynamic enhancement pattern in adenocarcinomas, dynamic enhancement pattern with tumor-to-parenchyma ration on arterial and portal phases in NETs, and dynamic enhancement pattern with lower ADC value in SPTs.  相似文献   

3.
The nonohmic electrical features of (Ca1/4,Cu3/4)TiO3 perovskite ceramics, which have very strong gigantic dielectric is believed originate from potential barriers at the grain boundaries. In the present study, we used the admittance and impedance spectroscopy technique to investigate (Ca1/4,Cu3/4)TiO3 perovskite ceramics with low nonohmic electrical properties. The study was conducted under two different conditions: on as-sintered ceramics and on ceramics thermally treated in an oxygen-rich atmosphere. The results confirm that thermal treatment in oxygen-rich atmospheres influence the nonohmic properties. Annealing at oxygen-rich atmospheres improve the nonohmic behavior and annealing at oxygen-poor atmospheres decrease the nonohmic properties, a behavior already reported for common metal oxide nonohmic devices and here firstly evidenced for the (Ca1/4,Cu3/4)TiO3 perovskite related materials. The results show that oxygen also influences the capacitance values at low frequencies, a behavior that is indicative of the Schottky-type nature of the potential barrier.  相似文献   

4.
Manganese ferrite nanoparticles with dysprosium (Dy) ions substituted for iron ions have been prepared by using a sol-gel method. Substitution of a small fraction Dy for Fe results in the larger magnetocrystallite anisotropy of MnFe2−xDyxO4 (x=0.2, 0.4) nanoparticles than that of MnFe2O4 nanoparticles. The magnetosrystallite anisotropy was enhanced with the increase in the substituted dysprosium content. Combining the result of Mössbauer spectra with ZFC and FC curves, we know clearly that the Dy substitution can modify the anisotropy of MnFe2O4 nanoparticles for its strong spin-orbital coupling. Through this simple substitution, we can control the magnetosrystallite anisotropy of the magnetic nanoparticles and make good use of the products according as we need.  相似文献   

5.
The variations with temperature of the line-shape, spin-lattice relaxation time, T1, and spin-spin relaxation time, T2, of the 1H nuclei in NH4HSeO4 single crystals were investigated, and with these 1H NMR results we were able to distinguish the crystals’ “ammonium” and “hydrogen-bond” protons. The line width of the signal due to the ammonium protons abruptly narrows near the temperature of the superionic phase transition, TSI, which indicates that they play an important role in this phase transition. The 1H T1 for NH4+ and HSeO4 in NH4HSeO4 do not change significantly near the ferroelectric phase transition of TC1 (=250 K) and the incommensurate phase transition of Ti (=261 K), whereas they change near the temperature of the superionic phase transition TSI (=400 K). Our results indicate that the main contribution to the low-temperature phase transition below TSI is that of the molecular motion of ammonium and hydrogen-bond protons, and the main contribution to the conductivity at high temperatures above TSI is the breaking of the O-H?O bonds and the formation of new H- bonds in HSeO4. In addition, we compare these results with those for the NH4HSO4 and (NH4)3H(SO4)2 single crystals, which have similar hydrogen-bonded structure.  相似文献   

6.
Today, SF6 is used to a great extent as insulating and arc-quenching medium in high-voltage gas-blast circuit breakers. The arcing in SF6 during current interruption forms decomposition products. These can influence the arc-quenching properties of the circuit breaker. Furthermore, they can cause corrosion of the circuit breaker housing. In this comprehensive study we present results obtained for the first time from a direct mass spectrometric investigation of the exhaust gases of a high pressure SF6 arc in a model circuit breaker. Our mass spectrometric system consists of a time-of-flight mass spectrometer (TOFMS) equipped with a molecular beam sampling systems. This device allows us to measure mass spectra of high pressure sources with a time resolution of up to 10,000 spectra per second. We have determined the formation rate of the most abundant decomposition products in a SF6 arc at 1 bar. These products are SF4, CF4, WF6, SOF2, SO2, CS2 S2F2 and HF. The fast detection time inherent to our system permits also the determination of the formation of SF4, which is 0.45–0.50 Vol. %/(kJ/1SF6). In addition, we have studied the influence of water and oxygen impurities which are responsible for the production of highly corrosive HF. Finally, we have considered the influence of the thermal degradation of teflon (P.T.F.E.), which is used as nozzle and insulating material in circuit breakers. On this occasion we have demonstrated that CF4, which exhibits dielectric properties similar to SF6, is the main decomposition product formed from teflon. However, we have found that besides CF4 also excess carbon is formed, which is deposited on insulators of the model circuit breaker.Our time-resolved mass spectra reveal that the CF4 production from teflon is delayed by a few milliseconds with respect to the SF6 dissociation in the arc. This delay can influence the interrupting process of the circuit breaker by changing the plasma composition during the arcing period. Although our experiments have been performed on a model circuit breaker we claim that the results presented in this study can be applied to real circuit breakers, since the arc current density and the energy dissipated per liter SF6 are of the same order of magnitude in both devices.  相似文献   

7.
We have fabricated a fuel cell based on a superprotonic conductor, a Tl3H(SO4)2 crystal, and have measured the electrical properties of this fuel cell. It is found that the open-circuit voltage in the fuel cell based on the Tl3H(SO4)2 crystal increases by supplying H2 fuel gas and typically becomes 0.83 V. Moreover, we have observed that the cell voltage decreases with increasing current density, as observed in fuel cells such as proton exchange membrane fuel cell, solid oxide fuel cell, etc. These results indicate that it is possible to use the Tl3H(SO4)2 crystal as the electrolyte of a solid acid fuel cell. In addition, we suggest that the selection of the electrode and the preparation of the very thin electrolyte are extremely important to achieve high-efficiency of power generation of this fuel cell.  相似文献   

8.
We report the results of an X-ray diffraction study of CdAl2Se4 and of Raman studies of HgAl2Se4 and ZnAl2Se4 at room temperature, and of CdAl2S4 and CdAl2Se4 at 80 K at high pressure. The ambient pressure phase of CdAl2Se4 is stable up to a pressure of 9.1 GPa above which a phase transition to a disordered rock salt phase is observed. A fit of the volume pressure data to a Birch-Murnaghan type equation of state yields a bulk modulus of 52.1 GPa. The relative volume change at the phase transition at ∼9 GPa is about 10%. The analysis of the Raman data of HgAl2Se4 and ZnAl2Se4 reveals a general trend observed for different defect chalcopyrite materials. The line widths of the Raman peaks change at intermediate pressures between 4 and 6 GPa as an indication of the pressure induced two stage order-disorder transition observed in these materials. In addition, we include results of a low temperature Raman study of CdAl2S4 and CdAl2Se4, which shows a very weak temperature dependence of the Raman-active phonon modes.  相似文献   

9.
In this paper, we report a new route to synthesize novel magnetic hollow silica nanospheres (MHSNs) using polystyrene particles as sacrificial templates, and TEOS and Fe3O4 as precursors. TEM, EDS, XRD, and SQUID were applied to characterize MHSNs. TEM and EDS results show that the MHSNs consist of about 200 nm of hollow cores and ∼35 nm shells with ∼10 nm of Fe3O4 nanoparticles embedded. The polystyrene beads were successfully removed by immersing the as-prepared silica nanocomposite in a toluene solution. XRD results demonstrate that the Fe3O4 magnetic nanoparticles still keep spinel structure even heated at low temperature. The surface status of the polystyrene beads and Fe3O4 nanoparticles has an important effect on the formation of the MHSNs. The MHSNs present a superparamagnetism at room temperature by SQUID measurement. The MHSNs have potential applications in biosystem and nanomedicine.  相似文献   

10.
The low thermal conductivity of the thermoelectric material β‐Zn4Sb3 has been linked to disorder arising from multiple interstitial Zn sites. Here we investigate the energetics and local distortions associated with these interstitial sites via DFT calculations. Our results show the β‐Zn4Sb3 structure is able to distort into many inequivalent geometries of similar energies, suggesting a topology rich with transport pathways through energetically accessible metastable states. The occurrence of such a shallow energy landscape may explain the recently discovered liquid‐like diffusivity of Zn in β‐Zn4Sb3 – comparable to that found in superionic conductors. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
A photoluminescence study of the blue-green emitting BaGa2S4:Eu2+ phosphor is reported. Diffuse reflectance, excitation and emission spectra were examined with the aim to enlarge the fundamental knowledge about the emission of the Eu2+ rare earth ion in this lattice. The thermal dependence of the radiative properties and the influence of the Eu2+ concentration were investigated. The Stokes shift, the crystal field splitting and the activation energy of the thermal quenching were determined. By combining these results with data available in literature, we discussed the radiative properties of the BaAl2S4:Eu2+ blue phosphor in relation with those determined in this study for the isostructural BaGa2S4:Eu2+ phosphor.  相似文献   

12.
In this paper we present and discuss magnetic properties of the Al87Y5Ni8, Al87Y4Gd1Ni8, Al87Gd5Ni8, Al87Y4Gd1Ni4Fe4 and Al87Gd5Ni4Fe4 amorphous alloys. The examinations have been concentrated on a possible magnetic ordering at low temperatures and its modification by amorphous surroundings as well as different magnetic moment of alloying additions. It was shown that magnetic properties of the Al87Y5Ni8 amorphous base alloy correspond to a superparamagnetic body with Ni magnetic clusters. Magnetic moment of Ni atom in amorphous aluminum matrix is found to be 0.3 μB that corresponds to less than 50 Ni atoms per one cluster. Gd doping of the base alloy leads to a decrease of the resultant magnetic moment of Ni clusters that can be explained by some antiferromagnetic coupling Ni-Gd and Ni-Ni within magnetic clusters.  相似文献   

13.
We report the results of electrical resistance measurements at high pressures on Cs2MoS4 and KTbP2Se6. The results of high pressure X-ray diffraction study of Cs2MoS4 are also presented. Interestingly, in the case of Cs2MoS4 the resistance vs. pressure follows the behavior of the absorption edge vs. pressure obtained from our optical measurements lending further support to a direct-indirect band crossing. In the case of KTbP2Se6,the phase transition at about 9.2 GPa is reflected in a sharp drop of the resistance. In addition we report the pressure dependence of the lattice constants as well as the equation of state of Cs2MoS4.  相似文献   

14.
The magnetic nanoparticles of Mn1−xCuxFe2O4 (x=0, 0.2) were prepared by using a sol-gel method. It is proved that both the MnFe2O4 and Mn0.8Cu0.2Fe2O4 nanoparticle samples have superparamagnetic feature. Although the particle sizes are the same, substitution of a small fraction Cu for Mn results in the increase of magnetocrystallite anisotropy energy, thus enhances the blocking temperature from 130 K for MnFe2O4 to 260 K for Mn0.8Cu0.2Fe2O4. Mössbauer spectroscopy confirms that the anisotropy constant K of the Mn0.8Cu0.2Fe2O4 material is distinctly higher than that of the MnFe2O4 compound. Increase of the blocking temperature suggests that the approach we employed is effective to tackle the ‘superparamagnetic limit’ problem.  相似文献   

15.
We have reported the Raman scattering and infrared absorption results on a t2g orbital ordered Ca2RuO4. At 10 K, a strong and clear peak was observed in Raman scattering near 1360 cm−1 with xx′ geometry. In contrast to optic phonon modes, the peak does not show any frequency shift but rapidly decreases with increasing temperature. In addition, the peak is not observed in infrared absorption measurement. By comparing the previous Raman scattering results for several transition metal oxides, we have discussed the possible origins and ambiguities of the intriguing peak in Ca2RuO4.  相似文献   

16.
17.
Mixtures of light-weight hydrides and elements were investigated to increase the understanding of the chemical reactions that take place between various materials. This report details investigations we have made into mixtures that include NaAlH4, LiAlH4, MgH2, Mg2NiH4, alkali(ne) hydrides, and early third row transition metals (V, Cr, Mn). Experimental parameters such as stoichiometry, heat from ball milling versus hand milling, and varying the temperature of high pressure molten state processing were studied to examine the effects of these parameters on the reactions of the complex metal hydrides.  相似文献   

18.
The magnetic and electric properties of the Sr2FeMoO6 compound produced under different preparation conditions were studied. Depending on the preparation condition, a strong variation in the nonmagnetic SrMoO4 impurity content was found, which in turn determined the metallic or semiconducting behavior of the resistivity of the Sr2FeMoO6 compound. There was also evidence that SrMoO4 played a crucial role in modifying the low magnetic field intergrain tunneling magnetoresistance in Sr2FeMoO6. In addition, we have established a simple method to prepare the single phase Sr2FeMoO6 polycrystals.  相似文献   

19.
20.
Bo Deng 《Applied Surface Science》2007,253(18):7369-7375
Effects of varying concentration of sulphate (SO42−) ion on the pitting behavior of 316SS have been investigated using potentiostatic critical pitting temperature (CPT) measurements, potentiostatic current transient technique and scanning electron microscopy in NaCl solution containing 0.5% Cl ions. The results demonstrated that when the concentration of SO42− ion is less than 0.42%, the CPT is surprisingly lower than that without SO42− ion, showing an accelerating effect of the SO42− ion on pit initiation, which is different from the traditional concept. As the concentration of SO42− ion increases beyond 0.42%, the CPT is higher than that without SO42− ion, displaying an inhibiting effect of the SO42− ion on pit initiation. Based on the above results, a qualitative model is proposed to explain the inhibiting and accelerating effect of SO42− ion on the pit initiation using the mechanism of ions-competitive adsorption between SO42− and Cl ions. The electric charges calculated in the process of pitting corrosion indicated that the pit morphology and its dimension are dependent on the content of SO42− ion in chloride-containing solutions. The higher the concentration of SO42− ion, the larger the dimension of the pit, reflecting an accelerating effect on pit growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号