首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We report that ferroelectric-relaxor behavior is induced by doping of SrO and TiO2, or BaO and TiO2 into classic ferroelectric (Na0.5K0.5)NbO3. It is found that [(Na0.5K0.5)0.9Sr0.1](Nb0.9Ti0.1)O3 ceramics exhibit a pronounced ferroelectric-relaxor behavior, comparable to that of [(Na0.5K0.5)0.9Ba0.1](Nb0.9Ti0.1)O3 ceramics. Our results indicate that the relaxor behavior is closely related to the appearance of micropolar regions in these systems. The relaxor behavior should arise from the dynamic response of micropolar clusters. Raman spectra of [(Na0.5K0.5)1−xSrx](Nb1−xTix)O3 ceramics measured in the wavenumber range from 100 to 1200 cm−1 confirm that the first order scattering is dominant in phonon bands should result from both short-range ordered region (micropolar regions) and disordered matrix. The frequency dependence of dielectric permittivity measurements show that the relaxor behavior of SrO and TiO2, or BaO and TiO2 doped (Na0.5K0.5)NbO3 ceramics is not a Debye type in the radio frequency range.  相似文献   

2.
Lead-free piezoelectric ceramics (1−x)Bi0.5(Na0.82K0.18)0.5TiO3xNaSbO3 have been prepared by a conventional ceramics technique, and their microstructure and electrical properties have been investigated. The addition of NaSbO3 has no remarkable effect on the crystal structure within the studied doping content; however, an obvious change in microstructure took place. With increase in NaSbO3 content, the temperature from a ferroelectric to antiferroelectric phase transition increases, and the temperature for a transition from antiferroelectric phases to paraelectric phases changes insignificantly. Simultaneously, the temperature range between the rhombohedral phase transition point and the Curie temperature point becomes smaller. The piezoelectric properties significantly increase with increase in NaSbO3 content and the piezoelectric constant and electromechanical coupling factor attain maximum values of d33=160 pC/N and kp=0.333 at x=0.01. The results indicate that (1−x)Bi0.5(Na0.82K0.18)0.5TiO3xNaSbO3 ceramic is a promising lead-free piezoelectric candidate material.  相似文献   

3.
(Bi0.5Na0.5)0.94Ba0.06TixO1+2x lead-free piezoceramics with x varying from 0.97 to 1.03 were fabricated and characterized in order to investigate the effects of TiO2-nonstoichiometry on the piezoelectric properties and depolarization temperature of (Bi0.5Na0.5)0.94Ba0.06TiO3 composition. X-ray diffraction (XRD) analysis showed that all samples have a single phase of perovskite structure with rhombohedral symmetry. Piezoelectric and dielectric measurements revealed that deficiency of TiO2 leads to an increase in the piezoelectric coefficient (d33), free relative permittivity (), and loss tangent (tan δ) besides an increase in the electromechanical coupling coefficient (kp) within a certain amount, while excess of TiO2 results in a decrease in kp, d33, and , but an increase in tan δ. Depolarization temperature (Td) measurement indicated a decrease and an increase in Td as a result of increasing TiO2 deficiency and TiO2 excess, respectively. This TiO2-nonstoichiometry also induced changes in the remanent polarization (Pr) and coercive field (Ec) of the ceramics.  相似文献   

4.
Ba[(Fe0.5Nb0.5)1−xTix]O3 (x=0.2,0.4,0.6,0.8,0.85,0.9 and 0.95) solid solutions were synthesized by a standard solid-state reaction technique. X-ray diffraction at room temperature and dielectric characteristics over a broad temperature and frequency range were evaluated systematically. The structure of Ba[(Fe0.5Nb0.5)1−xTix]O3 solid solutions changed from cubic to tetragonal with increasing x. A Debye-like dielectric relaxation following the Arrhenius law similar to that in Ba(Fe0.5Nb0.5)O3 was observed at lower temperature in the composition range 0.2≤x≤0.8, while the relaxor ferroelectric, diffused ferroelectric and normal ferroelectric behavior were observed for x=0.85,0.9 and 0.95, respectively. The process of the evolution of relaxor-like dielectric to ferroelectric suggested the changing from dilute polar micro-domains to polar micro-domains, polar micro/macro-domains and then polar macro-domains in the present ceramics.  相似文献   

5.
The dielectric and ferroelectric properties of (BaxSr1−x)0.77Ca0.23TiO3 ceramics with x=1 to 0.7 were studied and compared with those of BaxSr1−xTiO3 and Ba0.77Ca0.23TiO3 ceramics. It has been found that Sr doping of the Ba0.77Ca0.23TiO3 ceramics causes a drastic decrease of the Curie temperature, just like Sr doping of pure BaTiO3 ceramics, demonstrating a cell volume effect. However, the (BaxSr1−x)0.77Ca0.23TiO3 ceramics with x=0.9 and 0.8 have larger spontaneous polarization than those of the corresponding BaxSr1−xTiO3 and Ba0.77Ca0.23TiO3 ceramics, along with sufficient insulating properties. The enhancement of their polarization was explained by the increase of the lattice parameter c/a ratio due to the lattice distortion and strain developed in the ceramics.  相似文献   

6.
In the study, in order to develop the lead-free piezoelectric ceramics for actuator, transformer and other electronic-devices application, (K0.5Na0.5)(Nb0.9+xTa0.1)O3 + 0.5 mol% CuO + 0.2 mol% MnO2 ceramics were prepared by conventional mixed oxide method. The effects of B-site non-stoichiometry in [(K0.5Na0.5)] [(Nb0.9+xTa0.1)O3] ceramics on microstructure and piezoelectric properties were investigated. The density, electromechanical coupling factor (kp), mechanical quality factor (Qm), piezoelectric constant (d33), TC and TO-T of NKNT ceramics with x = 0.0065 showed the optimum values of 4.58 g/cm3, 0.427, 1554, 109 pC/N, 373 °C and 226 °C, respectively, suitable for piezoelectric motor, and transformer applications.  相似文献   

7.
Lead-free (K0.5Na0.5)0.90Li0.06Sr0.02Nb(1−x)SbxO3 (KNLSN-Sbx) ceramics were synthesized by ordinary sintering technique. The compositional dependence of phase structure and electrical properties of the ceramics was systematically investigated. All samples possessed pure perovskite structure, showing room temperature symmetries of orthorhombic at x<0.01, coexistence of orthorhombic and tetragonal phases at x=0.01, and tetragonal at 0.02≤x≤0.05. The temperature of the polymorphic phase transition (PPT) was shifted to lower temperature and dielectric relaxor behavior was induced by increasing Sb content. The samples near the coexistence region (x=0.01) exhibited enhanced electrical properties: d33∼145 pC/N, kp∼38% and Pr∼20.4 μC/cm2.  相似文献   

8.
Bismuth sodium barium titanate/poly(vinylidene fluoride-trifluoroethylene) 70/30 [(Bi0.5Na0.5)0.94Ba0.06TiO3-P(VDF-TrFE)] 0-3 composites were prepared by a hot-press method for different volume fractions of (Bi0.5Na0.5)0.94Ba0.06TiO3 ceramic powder in a P(VDF-TrFE) 70/30 copolymer matrix. The relative permittivity and dielectric loss of the composites increased with increase in the volume fraction of the ceramics, which well follows the Bruggeman model. The polarization responses of the composites were strongly dependent on the ceramic volume fraction. The composites with a higher ceramic volume fraction showed an increase in remanent polarization. At room temperature, a 0.3(Bi0.5Na0.5)0.94Ba0.06TiO3-0.7P(VDF-TrFE) composite showed a relative permittivity εr=30, remanent polarization and coercive field   相似文献   

9.
[Li0.03(K0.48Na0.52)0.97](Nb0.97Sb0.03)O3-(Ba0.85Ca0.15)(Ti0.90Zr0.10)O3 [(1−x)LKNNS-xBCTZ] lead-free piezoelectric ceramics were prepared by the conventional solid state method, and effects of BCTZ content on the piezoelectric properties of LKNNS ceramics were mainly investigated. A stable solid solution has been formed between LKNNS and BCTZ, and a morphotropic phase boundary of (1−x)LKNNS-xBCTZ ceramics is identified in the range of 0 < x ≤ 0.02. The Curie temperature of (1−x)LKNNS-xBCTZ ceramics decreases with increasing BCTZ content. A higher ?r value and a lower tan δ value are demonstrated for the (1−x)LKNNS-xBCTZ ceramic with x = 0.02. The (1−x)LKNNS-xBCTZ ceramic with x = 0.02 has an enhanced electrical behavior of d33 ∼ 237 pC/N, kp ∼ 48.6%, ?r ∼ 1451, tan δ ∼ 0.037, and Tc ∼ 335 °C. As a result, (1−x)LKNNS-xBCTZ ceramics are promising candidate materials for the field of lead-free piezoelectric materials.  相似文献   

10.
Lead-free piezoelectric ceramics (1 − x − y)Bi0.5Na0.5TiO3xBi0.5K0.5TiO3yBiGaO3 have been fabricated by an ordinary sintering technique, and their structure and electrical properties and depolarization temperature have been studied. The results of X-ray diffraction reveal that Bi0.5K0.5TiO3 and BiGaO3 diffuse into the Bi0.5Na0.5TiO3 lattices to form a new solid solution with a pure perovskite structure. An obvious change in microstructure with increasing concentration of Bi0.5K0.5TiO3 and BiGaO3 was observed. The piezoelectric constant d33 and the electromechanical coupling factor kp of the ceramics attain maximum values of 165 pC/N and 0.346 at y = 0.01(x = 0.18) and x = 0.21(y = 0.01), respectively. The temperature dependence of dielectric constant indicates an obvious relaxor characteristic with strong frequency dependence of dielectric constant. The depolarization temperature decreased with increasing content of BiGaO3 and first decreases and then increases with increasing amount of Bi0.5K0.5TiO3.  相似文献   

11.
0.935(K0.5+xNa0.5+x)NbO3-0.065LiSbO3 lead-free piezoelectric ceramics were prepared by normal sintering, and their piezoelectric and dielectric properties were investigated by varying the compensating amount x of alkaline elements (Na and K) addition. It was found that the crystal structure changed from tetragonal to orthorhombic with increasing x from −0.010 to 0.010. An MPB was tailored by optimizing the alkaline elements contents. Enhanced electrical and electromechanical responses of d33=253 pC/N, kp=0.47, kt=0.45 and tanδ=0.027 were obtained in the ceramics with x=0.005. These excellent piezoelectric and electromechanical properties indicate that this system may be an attractive lead-free material for a wide range of electro-mechanical transducer applications.  相似文献   

12.
In this paper, effects of lead doping on the lattice response and phase transitions of Sr1−xPbxBi2Nb2O9 (x=0.0-0.5 in steps of 0.1) ferroelectric ceramics are reported. It is observed that structure attains more tetragonality with doping of lead up to 40%. Increased orthorhombic distortion is observed for undoped SBN and 50 at.% lead substituted SBN. Phase transitions for all samples were studied using Curie temperature measurements and are explained in terms of lattice response of these ceramics. Sample with x=0.5 shows decreased tetragonal strain and Curie temperature. Relationship of polarization with lattice response is discussed.  相似文献   

13.
Bi4Ti3O12 (BiT), Bi3.25La0.75Ti3O12 (BLT), Bi4−x/3Ti3−xNbxO12 (BTN) and Bi3.25−x/3La0.75Ti3−xNbxO12 (BLTN) thin films have been prepared by pulsed laser deposition. BTN and BLTN films exhibit a maximum in the remanent polarization Pr at a Nb content x=0.018. At this Nb content, the BLTN film has a Pr value (25 μC/cm2) that is much higher than that of BiT and a coercive field similar to that of BiT. The polarization of this BLTN film is fatigue-free up to 109 switching cycles. The high fatigue resistance is mainly due to the substitution of Bi3+ ions by La3+ ions at the A site and the enhanced Pr arises largely from the replacement of Ti4+ ions by Nb5+ ions at the B site. The mechanisms behind the effects of the substitution at the two sites are discussed.  相似文献   

14.
Lead-free piezoelectric ceramics of (1−x)K0.5Na0.5NbO3-xLiTaO3 (KNN-LT) system have been investigated in this work. X-ray diffraction, Raman spectra measurements, DSC (Differential Scanning Calorimetric), and dielectric constant versus temperature provide direct evidence that the phase transition temperature between tetragonal and orthorhombic shift to lower temperature with the increasing of LT content. The KNN-0.05LT ceramics exhibit the highest high-field d33 up to 220 pm/V. At the same time, we also investigated the relationship between phase structure and electric properties, showing that the orthorhombic phase presents better piezoelectric temperature stabilities than the tetragonal phase. The result may provide a new way for KNN-based lead-free ceramics.  相似文献   

15.
Lead-free (Na0.5K0.5)NbO3-based piezoelectric ceramics were successfully fabricated by substituting with a small amount of BiFeO3 (BF). Difficulty in sintering of pure NKN ceramics can be eased by adding a few molar percent of BF, and the crystalline structure is also changed, leading to a morphotropic phase boundary (MPB) between ferroelectric orthorhombic and rhombohedral phases. The MPB exists near the 1-2 mol% BF-substituted NKN compositions, exhibiting enhanced ferroelectric, piezoelectric, and electromechanical properties of Pr=23.3 μC/cm2, d33=185 pC/N, and kp=46%, compared to an ordinarily sintered pure NKN ceramics. The MPB composition has a Curie temperature of ∼370 °C, comparable to that of some commercial PZT materials.  相似文献   

16.
Bismuth doped bismuth sodium titanate ceramics [(Bi1/2Na1/2)(1−1.5x)BixTiO3, x=0 to 0.06] were prepared, and the resulting effects on the microstructure and dielectric properties were examined. All of the Bi-doped ceramics exhibited a single phase of perovskite structure with rhombohedral symmetry. The poling leakage current was significantly reduced by the doping of Bi, facilitating the poling process of the ceramics. The doping with Bi enhances the piezoelectric properties and increases the dielectric constant and the dielectric loss of the ceramics. At 2 mol% Bi-doping level, the ceramics exhibit a large remanent polarization of 47 μC/cm2 and a relatively low coercive field of 71 kV/cm, while their d33 and kp reach a maximum value of 95 pC/N and 21%, respectively.  相似文献   

17.
Microstructure, phase transformation behavior and dielectric properties of BaTi1−x(Al1/2Nb1/2)xO3 (0.01≤x≤0.40) ceramics were investigated. A high level of (Al1/2Nb1/2)4+ substitution for Ti4+ ions was not conducive to the stability of the perovskite structure and resulted in the formation of BaAl2O4. As x was increased, lattice constants and unit cell volume decreased, reached a minimum at x=0.10 and then increased. The BaTi1−x(Al1/2Nb1/2)xO3 ceramics at room temperature experienced a transformation from ferroelectric to paraelectric phase with increasing (Al1/2Nb1/2)4+ concentration. Meanwhile, permittivity of the BaTi1−x(Al1/2Nb1/2)xO3 ceramics was markedly reduced, while Q value was slightly increased. Frequency dispersion of dielectric peak was obviously increased as x was increased from 0.01 to 0.10. It is of great interest that a dielectric abnormity represented by a broad dielectric peak at 200-400 K was observed for the composition with x=0.40.  相似文献   

18.
(Na0.85K0.15)0.5Bi0.5TiO3 thin films were deposited on LaNiO3(LNO)/SiO2/Si(1 0 0) and Pt/Ti/SiO2/Si(1 0 0) substrates by metal-organic decomposition, and the effects of bottom electrodes LNO and Pt on the ferroelectric, dielectric and piezoelectric properties were investigated by ferroelectric tester, impedance analyzer and scanning probe microscopy, respectively. For the thin films deposited on LNO and Pt electrodes, the remnant polarization 2Pr are about 22.6 and 8.8 μC/cm2 under 375 kV/cm, the dielectric constants 238 and 579 at 10 kHz, the dielectric losses 0.06 and 0.30 at 10 kHz, the statistic d33eff values 95 and 81 pm/V. The improved piezoelectric properties could make (Na1−xKx)0.5Bi0.5TiO3 thin film as a promising candidate for piezoelectric thin film devices.  相似文献   

19.
We report electric and magnetic properties of oxygen deficient Ba5−xLaxNb4−xTixO15−δ phases, which have been prepared by solid-state reaction method followed by a controlled reduction process under hydrogen atmosphere. The extra electrons added by the formation of the oxygen vacancies (δ) introduce localized spins and the magnetic susceptibility can be described by a temperature-independent contribution and a Curie-Weiss term associated to the Ti3+ ion formation. Besides, the experimental resistivity (ρ) data of these four reduced compounds are well described in a wide temperature range with the equation , which suggests the presence of small polarons in the system. Although, all samples present electrical insulating behavior, the electrical resistivity decreases four orders of magnitude for intermediate x values. We interpreted this fact as a consequence of the mix between the localized bands of the Nb and Ti ions, which favors the promotion of carriers due to reduction of the band gap.  相似文献   

20.
(K0.5Na0.5)NbO3 (KNN) based lead free ceramics have been fabricated by a solid state reaction. In this work, LiSbO3 (LS) modified KNN based ceramics were sintered at atmospheric pressure and high density (>96% theoretical) was obtained. The detailed elastic, dielectric, piezoelectric and electromechanical properties were characterized by using the resonance technique combined with the ultrasonic method. The full set of material constants for the obtained polycrystalline ceramics were determined and compared to the pure hot pressed KNN counterpart. KNN-LS polycrystalline ceramic was found to have higher elastic compliance, dielectric permittivity and piezoelectric strain coefficients, but lower mechanical quality factor, when compared to pure KNN, exhibiting a “softening” behavior. However, a high coercive field (∼17 kV/cm) was found for the LS modified KNN material. The properties as a function of temperature were determined in the range of −50-250 °C, showing a polymorphic phase transition near room temperature, giving rise to improved piezoelectric behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号