首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S. Diehl  C. Wetterich   《Nuclear Physics B》2007,770(3):206-272
We develop a functional integral formalism for ultracold gases of fermionic atoms. It describes the BEC–BCS crossover and involves both atom and molecule fields. Beyond mean field theory we include the fluctuations of the molecule field by the solution of gap equations. In the BEC limit, we find that the low temperature behavior is described by a Bogoliubov theory for bosons. For a narrow Feshbach resonance these bosons can be associated with microscopic molecules. In contrast, for a broad resonance the interaction between the atoms is approximately pointlike and microscopic molecules are irrelevant. The bosons represent now correlated atom pairs or composite “dressed molecules”. The low temperature results agree with quantum Monte Carlo simulations. Our formalism can treat with general inhomogeneous situations in a trap. For not too strong inhomogeneities the detailed properties of the trap are not needed for the computation of the fluctuation effects—they enter only in the solutions of the field equations.  相似文献   

2.
Shina Tan 《Annals of Physics》2008,323(12):2971-2986
It is well known that the momentum distribution of the two-component Fermi gas with large scattering length has a tail proportional to 1/k4 at large k. We show that the magnitude of this tail is equal to the adiabatic derivative of the energy with respect to the reciprocal of the scattering length, multiplied by a simple constant. This result holds at any temperature (as long as the effective interaction radius is negligible) and any large scattering length; it also applies to few-body cases. We then show some more connections between the 1/k4 tail and various physical quantities, including the pressure at thermal equilibrium and the rate of change of energy in a dynamic sweep of the inverse scattering length.  相似文献   

3.
Shina Tan 《Annals of Physics》2008,323(12):2987-2990
For a two-component Fermi gas in the unitarity limit (i.e., with infinite scattering length), there is a well-known virial theorem, first shown by J.E. Thomas et al. A few people rederived this result, and extended it to few-body systems, but their results are all restricted to the unitarity limit. Here I show that there is a generalized virial theorem for FINITE scattering lengths. I also generalize an exact result concerning the pressure to the case of imbalanced populations.  相似文献   

4.
David J. Toms   《Annals of Physics》2005,320(2):487-520
We study the thermodynamic properties of an ideal gas of fermions in a harmonic oscillator confining potential. The analogy between this problem and the de Haas–van Alphen effect is discussed and used to obtain analytical results for the chemical potential and specific heat in the case of both isotropic and anisotropic potentials. Step-like behaviour in the chemical potential, first noted in numerical studies, is obtained analytically and shown to result in an oscillatory behaviour of the specific heat when the particle number is varied. The origin of these oscillations is that part of the thermodynamic potential is responsible for the de Haas–van Alphen-type effect. At low temperatures we show analytically that there are significant deviations in the specific heat from the expected linear temperature dependence, again as a consequence of the de Haas–van Alphen part of the thermodynamic potential. Results are given for one, two, and three spatial dimensions. In the anisotropic case we show how the specific heat jumps as the ratio of oscillator frequencies varies.  相似文献   

5.
Shina Tan 《Annals of Physics》2008,323(12):2952-2970
The energy of the two-component Fermi gas with the s-wave contact interaction is a simple linear functional of its momentum distribution:
  相似文献   

6.
Q.H. Liu  X. Wang 《Physics letters. A》2008,372(5):574-578
A canonical ensemble for non-interacting classical spin-half systems containing small number of particles is developed to deal with the definition of temperature based upon the equal a priori probabilities which is the fundamental hypothesis of the statistical mechanics. When the number of spins is finite, the temperature of the system differs from that of bath, and the difference stays almost the same above a turning temperature and gets larger rapidly as the temperature decreases below it.  相似文献   

7.
8.
We analyse and numerically simulate the full many-body quantum dynamics of a spin-1 condensate in the single spatial mode approximation. Initially, the condensate is in a “ferromagnetic” state with all spins aligned along the y axis and the magnetic field pointing along the z axis. In the course of evolution the spinor condensate undergoes a characteristic change of symmetry, which in a real experiment could be a signature of spin-mixing many-body interactions. The results of our simulations are conveniently visualised within the picture of irreducible tensor operators.  相似文献   

9.
We point out that, when repulsive interactions between two fermions are not integrable, as the case may be for atomic fermions, the original Kohn-Sham density functional must be revised.  相似文献   

10.
Roman Tomaschitz 《Physica A》2008,387(14):3480-3494
Fermionic power-law distributions are derived by the second quantization of classical power-law ensembles, and applied to ultra-relativistic electron populations in the Galactic center. The γ-ray flux from the direction of the compact central source Sagittarius A* is fitted with a superluminal cascade spectrum. In this way, estimates of the radiating electron plasma in the Galactic center region are obtained, such as the power-law index, temperature, particle number, and internal energy. The spectral averaging of the tachyonic radiation densities with Fermi power-laws is explained. Fugacity expansions of the thermodynamic variables (thermal equation of state, entropy, isochoric heat capacity, and isothermal compressibility) are obtained in the quasiclassical high-temperature/low-density regime, where the spectral fit is carried out. The leading quantum correction to these variables is calculated, and its dependence on the electronic power-law index and the thermal wavelength is discussed. Excess counts of cosmic rays from the Galactic center region are related to the plasma temperature inferred from the cascade fit.  相似文献   

11.
We report on the attainment of quantum degeneracy of 40^K by means of efficient thermal collisions with the evaporatively cooled 87^Rb atoms. In a quadrupole-Ioffe configuration trap, potassium atoms axe cooled to 0.5 times the Fermi temperature. We obtain up to 7.59 × 10^5 degenerate fermions 40^K.  相似文献   

12.
We study the dynamics of a trapped Bose–Einstein condensate with a multiply-quantized vortex, and investigate the roles of the fluctuations in the dynamical evolution of the system. Using the perturbation theory of the external potential, and assuming the situation of the small coupling constant of self-interaction, we analytically solve the time-dependent Gross–Pitaevskii equation. We introduce the zero mode and its adjoint mode of the Bogoliubov–de Gennes equations. Those modes are known to be essential for the completeness condition. We confirm how the complex eigenvalues induce the vortex splitting. It is shown that the physical role of the adjoint zero mode is to ensure the conservation of the total condensate number. The contribution of the adjoint mode is exponentially enhanced in synchronism with the exponential growth of the complex mode, and is essential in the vortex splitting.  相似文献   

13.
The ground state of fermions in a 1D trap with δ function interaction is studied mathematically with group theory ideas.  相似文献   

14.
The quantum thermodynamic functions of a harmonic oscillator coupled to a heat bath through velocity-dependent coupling are obtained analytically. It is shown that both the free energy and the entropy decay fast with the temperature in relation to that of the usual coupling from. This implies that the velocity-dependent coupling helps to ensure the third law of thermodynamics.  相似文献   

15.
Considering the Gross-Pitaevskii integral equation we are able to formally obtain an analytical solution for the order parameter Φ(x) and for the chemical potential μ as a function of a unique dimensionless non-linear parameter Λ. We report solutions for different ranges of values for the repulsive and the attractive non-linear interactions in the condensate. Also, we study a bright soliton-like variational solution for the order parameter for positive and negative values of Λ. Introducing an accumulated error function we have performed a quantitative analysis with respect to other well-established methods as: the perturbation theory, the Thomas-Fermi approximation, and the numerical solution. This study gives a very useful result establishing the universal range of the Λ-values where each solution can be easily implemented. In particular, we showed that for Λ<−9, the bright soliton function reproduces the exact solution of GPE wave function.  相似文献   

16.
In this Letter we study the integrability of a class of Gross-Pitaevskii equations managed by Feshbach resonance in an expulsive parabolic external potential. By using WTC test, we find a condition under which the Gross-Pitaevskii equation is completely integrable. Under the present model, this integrability condition is completely consistent with that proposed by Serkin, Hasegawa, and Belyaeva [V.N. Serkin, A. Hasegawa, T.L. Belyaeva, Phys. Rev. Lett. 98 (2007) 074102]. Furthermore, this integrability can also be explicitly shown by a transformation, which can convert the Gross-Pitaevskii equation into the well-known standard nonlinear Schrödinger equation. By this transformation, each exact solution of the standard nonlinear Schrödinger equation can be converted into that of the Gross-Pitaevskii equation, which builds a systematical connection between the canonical solitons and the so-called nonautonomous ones. The finding of this transformation has a significant contribution to understanding the essential properties of the nonautonomous solitons and the dynamics of the Bose-Einstein condensates by using the Feshbach resonance technique.  相似文献   

17.
Approximate solutions of the Gross-Pitaevskii (GP) equation, obtained upon neglection of the kinetic energy, are well known as Thomas-Fermi solutions. They are characterized by the compensation of the local potential by the collisional energy. In this article we consider exact solutions of the GP-equation with this property and definite values of the kinetic energy, which suggests the term “kinetic Thomas-Fermi” (KTF) solutions. Despite their formal simplicity, KTF-solutions can possess complex current density fields with unconventional topology. We point out that a large class of light-shift potentials gives rise to KTF-solutions. As elementary examples, we consider one-dimensional and two-dimensional optical lattice scenarios, obtained by means of the superposition of two, three and four laser beams, and discuss the stability properties of the corresponding KTF-solutions. A general method is proposed to excite two-dimensional KTF-solutions in experiments by means of time-modulated light-shift potentials.  相似文献   

18.
5 rubidium-87 atoms released from an Ioffe–Pritchard magnetic trap is investigated experimentally. The expansion dynamics depend only on the trap frequencies, which are determined independently. The data are in good agreement with the expected expansion of a condensate, and are clearly distinct from the behaviour of a classical gas in the hydrodynamic regime. Received: 3 June 1998/Final version: 25 September 1998  相似文献   

19.
We study the effect of a one dimensional optical lattice in a cavity field with quantum properties on the superfluid dynamics of a Bose-Einstein condensate (BEC). In the cavity the influence of atomic backaction and the external driving pump become important and modify the optical potential. Due to the coupling between the condensate wavefunction and the cavity modes, the cavity light field develops a band structure. This study reveals that the pump and the cavity emerges as a new handle to control the superfluid properties of the BEC.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号