首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bound electron-hole pairs—excitons—are Bose particles with small mass. Exciton Bose-Einstein condensation is expected to occur at a few degrees Kelvin—a temperature many orders of magnitude higher than for atoms. Experimentally, an exciton temperature well below 1 K is achieved in coupled quantum well (CQW) semiconductor nanostructures. In this contribution, we review briefly experiments that signal exciton condensation in CQWs: a strong enhancement of the indirect exciton mobility consistent with the onset of exciton superfluidity, a strong enhancement of the radiative decay rate of the indirect excitons consistent with exciton condensate superradiance, strong fluctuations of the indirect exciton emission consistent with critical fluctuations near the phase transition, and a strong enhancement of the exciton scattering rate with increasing concentration of the indirect excitons revealing bosonic stimulation of exciton scattering. Novel experiments with exciton condensation in potential traps, pattern formation in exciton system and macroscopically ordered exciton state will also be reviewed briefly.  相似文献   

2.
Optical spectra of highly excited quantum wires at low temperatures have been studied within the dynamical screening approximation. We found a strong Fermi-edge singularity (FES) in the photoluminescence spectra. The spectral shape and FES intensity strongly depend on temperature in agreement with recent experimental results.  相似文献   

3.
The possibility of achievement of high exciton concentrations is analyzed. It is shown that high concentrations can be achieved in a three-layer thin molecular film due to the autoreduction processes taking place in it. Shortly, the appearance of high concentrations is the consequence of boundary conditions in film and of the magnitude of matrix elements of dipol-dipol interactions. The autoreduction takes place in the cases when matrix elements characterizing exciton transfer are less than statistical matrix elements. Based on numerical analysis, it was found that optical quanta concentrations of a three-layer film can achieve values of about 5×10−2. The structures possessing so high concentration do not exist in nature, thus they have to be synthesised. For the current state of nanotechnology, it is not a problem. Fortunately achieving high concentrations requires only certain ratios of relevant characteristics of the film with a two-level exciton scheme, but not their single values.  相似文献   

4.
The X trion is essentially an electron bound to an exciton. However, due to the composite nature of the exciton, there is no way to write an exciton-electron interaction potential. We can overcome this difficulty by using a commutation technique similar to the one we introduced for excitons interacting with excitons, which allows to take exactly into account the close-to-boson character of the excitons. From it, we can obtain the X trion creation operator in terms of excitons and electrons. We can also derive the X trion ladder diagram between an exciton and an electron. These are the basic tools for future works on many-body effects involving trions.  相似文献   

5.
The Aharonov-Bohm and superradiant effect on the radiative decay rate of an exciton in a quantum ring is studied. With the increasing of ring radius, the exciton decay rate is enhanced by superradiance, while the amplitude of AB oscillation is decreased. The competition between these two effects is shown explicitly and may be observable in time-resolved experiments.  相似文献   

6.
A microscopic theory for the induced terahertz (THz) absorption of semiconductors is applied to study the time-dependent system response after non-resonant optical excitation. The formation of excitonic populations from an interacting electron-hole plasma is analyzed and the characteristic THz signatures are computed. Good qualitative agreement with recent experiments is obtained.  相似文献   

7.
We have studied magneto-photoluminescence (PL) spectra of a single carbon nanotube at low temperatures. A single PL peak arising from optically allowed (bright) exciton state was observed under the zero-magnetic field, and an additional PL peak from optically forbidden (dark) exciton state was enhanced with increasing the magnetic field. Excitons populate in the lower dark state at low temperatures, and the optically forbidden transition is observed due to the Aharonov-Bohm effect.  相似文献   

8.
Electron-phonon interaction effects on linear and nonlinear optical absorption in cylindrical quantum wires are investigated. The linear and nonlinear optical absorption coefficients are obtained by using compact-density-matrix approach and iterative method, and the numerical results are presented for GaAs/AlAs cylindrical quantum-well wires. The results show that electron-phonon interaction not only influences the relaxation rate but also distinctly influences the wave functions and energies of the electron. The correction of electron-phonon interaction effect on the wave functions of the electron dominates the values of absorption coefficients. Moreover, the correction of electron-phonon interaction effect on the energies of the electron makes the absorption peaks blue shift and become wider.  相似文献   

9.
Photocurrent spectrum in homoepitaxal diamond film formed by chemical vapor deposition has been measured in the photon energy range 5-6 eV of the vicinity of the indirect band gap. It has been seen that the line shape of the spectrum in the photon energy range lower than 5.6 eV agrees with the fundamental absorption edge spectrum in natural diamond. Structures in the spectrum have been explained from the optical transition due to indirect excitons assisted by TO phonons and indirect band-to-band transition.  相似文献   

10.
We have investigated third-order nonlinear optical properties of bundled and isolated semiconducting single-walled carbon nanotubes (SWNTs) by means of Z-scan method, pump-probe method, and two-beam time-resolved degenerate four-wave mixing (DFWM) method. The figures of merit Im χ(3)/α in both bundled and isolated SWNTs samples were found to be enhanced with increasing tube diameter. The measured Im χ(3)/α value in the bundled SWNTs was an order of magnitude smaller than that in the isolated SWNTs. Both population relaxation time T1 and phase-relaxation time T2 for bundled samples were smaller than those in the isolated samples. These experimental results can be explained by an increase in nonradiative recombination rate and phase-relaxation rate in the bundled sample. The phase-relaxation time T2 is considered to have a significant role in the enhancement of Im χ(3)/α.  相似文献   

11.
Defects of the type of VK and Pb+ centres were created in CsI:Pb under the 4.03 eV XeCl laser line irradiation at 10 K. After irradiation, the self-trapped and localized exciton emission excited by the same XeCl laser line was observed as a result of the recombination of electrons, optically released from Pb+, with the VK centres. A strongly superlinear dependence of the emission intensity on the excitation intensity was found for the 3.65 eV emission of the self-trapped exciton. A much weaker superlinearity was observed for the visible localized exciton emission. Optical amplification of the exciton emission was considered as the most probable reason of the observed phenomenon. At 10 K, optical gain G=3.74 was calculated for the self-trapped exciton emission.  相似文献   

12.
Schottky barrier contact using three different metal (Zr, Ti, Cr and Pt) and Ohmic contact using Ni were made on same epitaxial growth layer of p-GaN. Measurements were carried out using current-voltage-temperature (I-V-T) in the range of 27-100°C. Under forward bias and room-temperature (RT), the ideality factors (η) were determined to be 2.38, 1.82, 1.51 and 2.63, respectively, for Zr, Ti, Cr and Pt. The Schottky barrier height (SBH) and effective Richardson coefficient A** were measured through modified Norde plot as one of the analysis tools. Barrier heights of 0.84, 0.82, 0.77 and 0.41 eV for Zr, Ti, Cr and Pt, respectively, were obtained from the modified Norde plot. Schottky barrier heights of Zr, Ti, or Cr/p-GaN were also measured through activation energy plot, and determined to be in the same range (∼0.87 eV) and Pt at 0.49 eV. These results indicate that the Fermi level seems to be pinned due to the value of slope parameter (S) was very low (S = −0.25).  相似文献   

13.
This paper describes measurements of exciton relaxation in GaAs/AlGaAs quantum well structures based on high resolution nonlinear laser spectroscopy. The nonlinear optical measurements show that low energy excitons can be localized by monolayer disorder of the quantum well interface. We show that these excitons migrate between localization sites by phonon assisted migration, leading to spectral diffusion of the excitons. The frequency domain measurements give a direct measure of the quasi-equilibrium exciton spectral redistribution due to exciton energy relaxation, and the temperature dependence of the measured migration rates confirms recent theoretical predictions. The observed line shapes are interpreted based on solutions we obtain to modified Bloch equations which include the effects of spectral diffusion.  相似文献   

14.
Within the framework of the effective-mass approximation, the exciton states confined in wurtzite ZnO/MgZnO quantum dot (QD) are calculated using a variational procedure, including three-dimensional confinement of carriers in the QD and the strong built-in electric field effect due to the piezoelectricity and spontaneous polarizations. The exciton binding energy and the electron-hole recombination rate as functions of the height (or radius) of the QD are studied. Numerical results show that the strong built-in electric field leads to a remarkable electron-hole spatial separation, and this effect has a significant influence on the exciton states and optical properties of wurtzite ZnO/MgZnO QD.  相似文献   

15.
We first predict the splitting of a spin degenerate impurity level when this impurity is irradiated by a circularly polarized laser beam tuned in the transparency region of a semiconductor. This splitting, which comes from different exchange processes between the impurity electron and the virtual pairs coupled to the pump beam, induces a spin precession around the laser beam axis, which lasts as long as the pump pulse. It can thus be used for ultrafast spin manipulation. This effect, which has similarities with the exciton optical Stark effect we studied long ago, is here derived using the concepts we developed very recently to treat many-body interactions between composite excitons and which make the physics of this type of effects quite transparent. They, in particular, allow to easily extend this work to other experimental situations in which a spin rotates under laser irradiation.  相似文献   

16.
Spatially localized excitons are observed in InGaN quantum well structures at 4 K by using a micro-photoluminescence (PL) technique. By combining PL and nano-lithographic techniques, we are able to detect PL signals with a 0.2 μm spatial resolution. A sharp PL line (linewidth of <0.4 meV) is clearly obtained, which originates from a single localized exciton induced by a quantum dot like a local potential minimum position. Sharp PL spectra detected in three QWs with different indium compositions confirm that there are exciton localization effects in quantum wells in the blue-green (about 2.60 eV, 477 nm) to purple (about 3.05 eV, 406 nm) regions.  相似文献   

17.
We report on dynamics of excitons in CdxZn1−xTe/ZnTe quantum dots (QDs) and present information of excitonic transport and recombination. Due to different growth methods, samples with different QD's densities were obtained. Time-resolved measurements reveal three decay mechanisms: (i) radiative recombination of excitons in the individual QDs; (ii) thermally activated escape of excitons and (iii) escape due to tunneling (hopping). In the high QD-density samples the hopping (rHB=2700 ns−1) is two orders of magnitude more efficient than in the low QD-density samples (rHB=33 ns−1). Radiative recombination rates are similar in both types of samples, rR=1-1.3 ns−1. Due to the good radiative to nonradiative recombination ratio, the low-density QDs can be a potential source of entangled photon pairs.  相似文献   

18.
ZnO films were prepared on (1 1 1) YSZ and (0 0 0 1) sapphire by pulsed laser deposition method. Effect of lattice mismatch on the carrier transport properties of ZnO epitaxial thin films was investigated. The carrier mobility of the ZnO films on YSZ was larger than that of ZnO/sapphire due to smaller lattice mismatch when the thickness was below 150 nm. The effect of electrically degenerated layer on the carrier transport property increased with decreasing the film thickness of ZnO film. The carrier density and electron mobility of 20 nm-thick-ZnO film on either substrate were regardless of the temperature. We concluded that the dominant carrier scattering mechanism in ZnO ultra thin films is double Schottky barriers at the grain boundary and that their height depends on the carrier concentration.  相似文献   

19.
Recent experimental investigations revealed that the biaxial stress in thin InGaN layers grown on thick GaN layer induces a large piezoelectric field along [0001] orientation that causes red-shift in optical transitions and reduction in oscillator strengths because of spatial separation of the electron and hole wave functions. In this Letter based on theoretical modeling we determined the well width z-dependent effect on red-shifted quantum-confined Stark effect (QCSE) in GaN/InxGa1 − xN (x=0.13) strained quantum well structures. Analyses are based on the solution of Schrödinger equation in a finite well including the internal piezoelectric electric field (F) due to the strained polarization as the perturbation potential. Our theoretical results show: (1) the red-shift in optical transition has a quadratic well-width form as it is for infinite wells (Davies, 1998) [1], (2) assuming the model based on a carrier effective mass dependence on the width of quantum wells, m(z), fits the experimental data (Takeuchi et al., 1997) [2] much more accurate compare to the model with constant effective mass, m.  相似文献   

20.
Using temperature-dependent photoluminescence (PL) measurements, we report a comprehensive study on optical transitions in AlyInxGa1−xyN epilayer with target composition, x=0.01 and y=0.07 and varying epilayer thickness of 40, 65 and 100 nm. In these quaternary alloys, we have observed an anomalous PL temperature dependence such as an S-shape band-edge PL peak shift and a W-shape spectral broadening with an increase in temperature. With an increase in excitation power density, the emission peak from the AlInGaN epilayers shows a blue shift at 100 K and a substantial red shift at room temperature. This is attributed to the localization of excitons at the band-tail states at low temperature. Compared to 40 and 65 nm thick epilayers, the initial blue shift observed with low excitation power from 100 nm thick AlInGaN epilayer at room temperature is caused by the existence of deeper localized states due to confinement effects arising from higher In and Al incorporation. The subsequent red shift of the PL peak can be attributed by free motion of delocalized carriers that leads to bandgap renormalization by screening. Due to competing effects of exciton and free carrier recombination processes, such behavior of optical transitions leads to two different values of exponent ‘k’ in the fitting of PL emission intensity as a function of excitation power.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号