首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ground state of Na0.5CoO2 has been calculated using the full potential local orbital method and local density approximation plus Hubbard U (); the results demonstrate that charge and orbital ordering evidently exist in the present system in association with the antiferromagnetic state. Notable structural features observed between 300 and 30 K have been carefully examined using in situ TEM investigations, a superstructure with a wave vector of Q1=a/2, becoming commonly visible below , can be interpreted as the charge/orbital ordering on the Co1 and Co2 sites. Moreover, we have also observed another notable superstructure with Q2=a/4 below the phase transition of , which suggests a more complicated orbital ordered state existing at lower temperatures.  相似文献   

2.
3.
(n-C3H7)4N[FeIIFeIII(dto)3] shows a new type of first order phase transition called charge-transfer phase transition around 120 K, where the charge transfer between FeII and FeIII occurs reversibly. Recently, we have succeeded in obtaining single crystals of the title complex and determined the crystal structure at room temperature. Crystal data: space group P63, Z=2. Moreover, we have investigated the structural transition caused by the charge-transfer phase transition by means of powder X-ray diffraction measurement. When the temperature is decreased, the a-axis, which corresponds to the hexagonal ring size in two-dimensional honeycomb network structure of [FeIIFeIII(dto)3], contracts by 0.1 Å at the charge-transfer transition temperature (TCT), while the c-axis, perpendicular to the honeycomb network layer, elongates by 0.1 Å at TCT. Consequently, when the temperature is decreased, the unit cell volume decreases without noticeable anomaly around TCT, which is responsible for the quite small vibrational contribution to the entropy change, compared with usual spin crossover transition. Thus, the charge-transfer phase transition around 120 K for (n-C3H7)4N[FeIIFeIII(dto)3] is regarded as spin entropy driven phase transition.  相似文献   

4.
We have measured the specific heat of crystals of (Ca1−xSrx)3Ru2O7 using ac- and relaxation-time calorimetry. Special emphasis was placed on the characterization of the Néel () and structural () phase transitions in the pure, x=0 material. While the latter is believed to be first order, detailed measurements under different experimental conditions suggest that all the latent heat (with L∼0.3R) is being captured in a broadened peak in the effective heat capacity. The specific heat has a mean-field-like step at TN, but its magnitude () is too large to be associated with a conventional itinerant electron (e.g. spin-density-wave) antiferromagnetic transition, while its entropy is too small to be associated with the full ordering of localized spins. The TN transition broadens with Sr substitution while its magnitude decreases slowly. On the other hand, the entropy change associated with the Tc transition decreases rapidly with Sr substitution, and is not observable for our x=0.58 sample.  相似文献   

5.
The physical properties of La0.5Ba0.5FeO3 perovskite have been investigated. The resistivity and magnetism change at around the charge disproportionation temperature. The ferromagnetic cluster-glass state appears when . Under 5 kbar pressure a new phase transition at 5.5 K is found in the magnetization measurement. The transition temperature increases with the increase of the applied pressure. It is suggested that this transition is induced by the spin state transition from to with the pressure increase.  相似文献   

6.
We report the ac electrical response of La0.7Sr0.3Mn1−xFexO3(x=0.05) as a function of temperature, magnetic field (H) and frequency of radio frequency (rf) current (). The ac impedance (Z) was measured while rf current directly passes through the sample as well as in a coil surrounding the sample. It is found that with increasing frequency of the rf current, Z(T) shows an abrupt increase accompanied by a peak at the ferromagnetic Curie temperature. The peak decreases in magnitude and shifts down with increasing value of H. We find a magnetoimpedance of for at around room temperature when the rf current flows directly through the sample and when the rf current flows through a coil surrounding the sample. It is suggested that the magnetoimpedance observed is a consequence of suppression of transverse permeability which enhances skin depth for current flow. Our results indicate that the magnetic field control of high frequency impedance of manganites is more useful than direct current magnetoresistance for low-field applications.  相似文献   

7.
8.
The temperature dependence of the Hall-Lorenz number () for the optimally doped La1.855Sr0.145CuO4 (LSCO) has been obtained from the experimentally determined transverse and longitudinal transport coefficients. A comparison between Lxy(T) dependence found for LSCO and Lxy(T) reported previously for copper indicates that the Hall-Lorenz number in LSCO follows standard metallic behavior from room temperature down to . Below this temperature the Lxy coefficient deviates from regular metallic dependence in a way characteristic of an electronic system with lowered density of electronic states at the Fermi level. We present results of calculations provided in terms of the Boltzmann equation for a two-dimensional model of the electronic structure with a d-symmetrical pseudogap. A temperature Tmax, where a maximum in the Lxy(T) dependence appears, turns out to be dependent on the width of the supposed pseudogap . The best agreement between the model and the experimental data was obtained for , which corresponds well with values reported previously by other groups.  相似文献   

9.
The power loss PL of La0.7(Ba1-xSrx)0.3MnO3 (0≤x≤1) as a function of temperature, frequency (f) and amplitude of flux density (Bp), has been studied to analyze the effect of A-site cation mean radius <rA> and size-disorders σ2. It is found that as f is lower than 1 MHz, PL is proportional to in the low induction region, and in the high induction region, indicating that PL is dominated by hysteresis losses. For f approaches 1 MHz, PL of the majority of samples obeys a law, which may be attributed to eddy current loss. The temperature dependence of PL displays a peak around the transition from ferromagnetic-metal to paramagnetic-insulator, resembling the feature of the Rayleigh constant η. This case further demonstrates that in the low frequency region, PL predominantly originates from hysteresis loss. A decrease in σ2 with increasing x, will relieve local strain, raising η, thus give rise to an increase in PL.  相似文献   

10.
11.
The effect of Co doping at Mn-site on the structural, magnetic and electrical transport properties in electron-doped manganties La0.9Te0.1Mn1−xCoxO3 (0≤x≤0.25) has been investigated. The room temperature structural transition from rhombohedra to orthorhombic (Pbnm) symmetry is found in these samples with x≥0.20 by the Rietveld refinement of X-ray powder diffraction patterns. All samples undergo the paramagnetic-ferromagnetic (PM-FM) phase transition. The Curie temperature TC of these samples decreases and the transition becomes broader with increasing Co-doping level. The magnetization magnitude of Co-doping samples increases at low temperatures with increasing Co-doping level for x≤0.15 and decreases with increasing Co-doping content further. The metal-insulator (M-I) transitions observed in the sample with x=0 are completely suppressed with Co doping, and the resistivity displays semiconducting behavior within the measured temperature region for these samples with x>0. All results are discussed according to the changes of the structure parameters and magnetic exchange interaction caused by Co-doping. In addition, the different effects between the Co doping and Cu doping in the Mn site for the electron-doped manganites are also discussed.  相似文献   

12.
13.
Effects of doping Na on the structure, electrical and magnetic properties of La2/3Ca1/3MnO3 are investigated. A structural phase transition from orthorhombic to rhombohedral structure takes place at y=0.375. All samples show metal-insulator (M-I) transition at the transition temperature and undergo the transition from paramagnetism to ferromagnetism at the Curie temperature TC. and TC increase monotonically with increasing Na content. However the Na-doped samples have a shoulder in their electrical transport curves found below and shows a widened magnetic transition process. On the other hand, intrinsic colossal magnetoresistance (CMR) peaks are observed in all the samples, but samples with y around 0.25 show two MR peaks which can be attributed to magnetic inhomogeneity induced by the doped Na+ ions. Here we propose a method to broaden the CMR peak of perovskite manganite, which is beneficial for practical applications.  相似文献   

14.
15.
The Kondo insulator Y bB12 is known to undergo a transition to the metallic state with doping or under an external magnetic field. Within the virtual crystal approximation (VCA), we calculated the occupation of the Yb 4f and 5d shells, and , as a function of doping of Y bB12 with the rare earths Tm and Lu. We found that exhibits an anomalous change at the critical concentration of the dopant, in agreement with experiment ( for Y b1−xLuxB12 and for Y b1−xTmxB12). We suggest that the critical behaviour seems to be strictly connected with the change of and in consequence the change of the Yb valency.  相似文献   

16.
17.
We have investigated the molecular motions of TRIS+ ([(CH2OH)3CNH3]+) and ions in the [(CH2OH)3CNH3]2SiF6 crystal below room temperature from the measurements of the spin-lattice relaxation time T1 and the NMR absorption line of 1H and 19F nuclei, in order to elucidate the changes of the molecular motions by the phase transition of Tc=178 K. The narrowing of the 19F-NMR line was observed around Tc=178 K and the reorientation of the anion appears above Tc. Moreover, from the analysis of the temperature dependence of T1, we have observed that the activation energy of the reorientational motion of ions changes from 0.168 eV (T>Tc) to 0.185 eV (T<Tc). Based on these results, we found that the reorientational motion of ions is closely related to the origin of the phase transition at Tc. In addition, from the measurement of the 1H-NMR line, we also found that the reorientational motion of H2 in the -CH2OH group becomes active accompanied by the phase transition.  相似文献   

18.
Piezoelectric single crystals of 0.58Pb(Sc1/2Nb1/2)-0.42PbTiO3 and Nb5+-doped PSN-PT have been grown using flux technique. It is believed that the addition of Nb5+ creates lead vacancy in order to compensate charge neutrality. The structural distortion that occured in the doped crystals has been revealed through broadening of some peaks in X-ray diffraction studies. Niobium content that increased from 0.50 to 1.00 mol% might have induced more defect dipoles associated with . This plays a significant role in improving the ferroelectric, dielectric and piezoelectric properties. Our observations clearly show an increase in the spontaneous polarization (Pr), dielectric constant at room temperature, degree of diffuseness and transition temperature (Tc) and also a decrease in coercive field. The reasons behind these enhanced electrical properties are discussed in detail.  相似文献   

19.
Low temperature magnetic (M) and thermal (CP) properties of the intermetallic compound Ce2Pd2Sn have been investigated at zero and different magnetic fields. Two transitions were recognized at and , with latter nearly coinciding with the extrapolated Curie-Weiss temperature . The Curie factor evaluated from TTM, is ≈2μB. The positive value of θP, the triangular coordination of the magnetic (Ce) atoms and the weak effect of applied magnetic field, reveal that TM cannot be considered as a canonic antiferromagnetic transition like claimed in the literature. M(T) measurements under moderate magnetic fields () show TC(B) increasing while TM(B) is practically not affected. Both transition merge in a critical point at for , where the intermediate phase is suppressed. At , the cusp of a first order transition is observed in CP(T). According to the proposed ferromagnetic ground state, it is followed by a CP(T)∝T3/2exp(-Eg/T) dependence, with a gap of anisotropy .  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号