首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The gadolinium-based manganite GdMnO3 of perovskite structure has been partially substituted at the manganese site by transition metal elements Me like Cu, Ni and Co, leading to a general formula GdMexMn1−xO3, in which different magnetic entities (e.g., Gd3+, Cu2+, Ni2+, Co2+, Co3+, Mn3+, Mn4+) can coexist, depending on charge equilibrium conditions. For divalent cations such as Cu2+ and Ni2+, the solid solution extends from x  (Me)=0–0.5, with O-type orthorhombic symmetry (a<c/√2<b)(a<c/2<b). When the substituting element is cobalt, the solid solution extends over the whole range [0?x  ?1], changing from O′-type symmetry (c/√2<a<b)(c/2<a<b) to O-type for x>0.5. In this latter case, the synthesis is performed under oxygen flow, which allows the cobalt ion to take a 3+ oxidation state.  相似文献   

3.
Magnetic and transport properties of (La0.7Pb0.3MnO3)1−xAgx composites are explored in this study. Ferromagnetism is gradually attenuated due to the magnetic dilution with increase of Ag content percentage. Clearly irreversible behavior in the zero-field cooling and field cooling curves at a low field caused by the competition between the magnetization and magnetic domain orientation processes has been observed as x increases. Saturation magnetization decreases as x increases, while ferromagnetic transition temperature remains around 346 K for all composites. The resistivity decreases significantly for (La0.7Pb0.3MnO3)1−xAgx composites. It is suggested that introduction of Ag into the niche of grain boundaries forms artificial conducting network and improves the carriers to transport. However, enhancement of magnetoresistance has been observed for the system.  相似文献   

4.
We report neutron diffraction measurements on CeNi4Mn, which has recently been identified as a soft ferromagnet with a sizeable spin-transport polarization. Our data show conclusively that the Mn atoms occupy a unique site (4c) in the unit cell, which has the symmetry of the cubic MgCu4Sn-type structure. We infer a moment of 4.6 μB on Mn at 17 K, which is oriented ferromagnetically along the {101} plane. The amplitude of the Mn vibrational motion is found to be larger than that of Ce and Ni atoms at all temperatures, thereby lending support to theoretical prediction of rattling phonon modes in this compound.  相似文献   

5.
We report the results of the temperature-dependent neutron diffraction measurements on the nearly half-doped (La0.325Tb0.125)(Ca0.3Sr0.25)MnO3 manganite sample. The simultaneous doping of magnetic Tb3+ and divalent Sr2+ in the La0.7Ca0.3MnO3 system results into a large A-site size disorder. Rietveld refinement of neutron diffraction data reveal that the single phase sample crystallizes in a distorted orthorhombic structure. Increased 〈rA〉 value affects the transport behavior that results into an insulating-like behavior of the sample. Under application of 1 T field sample exhibit insulating-like behavior while insulator-metal transition (TIM) is exhibited under 5 and 8 T fields. Variable range hoping (VRH) mechanism of charge carriers is exhibited in the insulating region. Field cooled and zero field cooled magnetization measurement shows the Curie temperature (TC)~47 K. The refinement of the ND data collected at various temperatures below 300 K shows that there is no structural phase transition in the compound. Around 100 K, a magnetic peak appears at lower angle that can be ascribed to the presence of the A-type antiferromagnetic (AFM) phase. Two more peaks are observed around 50 K at lower angles that can be fitted in CE-type antiferromagnetic phase. Splitting of the peaks at lower temperatures is the signature of orbital ordering in the presently studied nearly half-doped manganite system. Results of the detailed structural analysis of the temperature-dependent ND measurements on (LaTb)0.45(CaSr)0.55MnO3 sample has been discussed in the light of coexisting A-type and CE-type antiferromagnetic phases present in the sample at low temperature.  相似文献   

6.
7.
Rare-earth-based manganites ABO3 may present interesting properties when the lanthanide (A-site) and/or the manganese (B-site) are partially substituted by divalent elements. Heavy lanthanides are particularly appealing because of the expected interplay between the intrinsic magnetic properties of the rare-earth element (Ln) and those of the ferromagnetic manganese sublattice. As such, a spin reorientation has been observed during magnetization-versus-temperature cycles due to a negative exchange interaction between Mn and Ln. We present herein high-quality epitaxial thin films (∼200 nm thick) of Gd0.67Ca0.33MnO3 deposited onto (1 0 0) SrTiO3 substrates by pulsed-laser deposition. Enhanced properties were observed in comparison with bulk samples. The magnetic transition temperature Tc of the as-grown films is much higher than the corresponding bulk values. Most interesting, magnetization measurements performed under small applied fields, exhibit magnetization reversals below Tc, no matter whether the film is field-cooled (FC) or zero-field-cooled (ZFC). The reversal mechanism is discussed in terms of a negative exchange f-d interaction and magnetic anisotropy, this latter enhanced by strain effects induced by the lattice mismatch between the film and the substrate.  相似文献   

8.
We present herein a comparison of the magnetic properties of bulk ceramics and thin films of the ferrimagnetic ErCo0.50Mn0.50O3 compound. Epitaxial thin films were deposited onto (1 0 0) SrTiO3 substrates by pulsed-laser ablation while bulk ceramics were prepared by solid state reaction. When cooling under low applied fields, a spin reversal is observed in both thin film and bulk due to the competition between two magnetic sublattices (Co/Mn and Er) coupled by a negative exchange interaction. Original features are observed in the M(H) loops for bulk materials: abrupt jumps at 4 T due to a reorientation of domains, while in the low field region, the increasing and decreasing branches of the magnetization intersect each other. In the thin film, the ordering temperature increased from 69 to 75 K, and the ZFC anomaly (AF transition) became sharper, compared to the bulk specimen. The oxygen content and the microstructure are crucial to observe the intersection of the magnetization branches.  相似文献   

9.
The results of an inelastic neutron scattering study of the spin wave spectrum for the garnet Fe2Ca3Si3O12(FeSiG) are presented. We compare the exchange parameters for this garnet and for the Ge-species (Fe2Ca3Ge3O12(feGeG)) having the same magnetic structure. We relate the differences found with structural information from powder neutron diffraction. In this way the super exchange paths viap orbitals of intermediate oxygen atoms can be identified. We discuss the effect of a small number (3.2(5)%) of Mn2+ impurities in the 24c sites. These lead to an effective ferromagnetic exchange between the Fe3+ ions and drastically renormalize the average exchange constants. An estimate for the Fe3+–Mn2+ indirect exchange between a and c sites of 6(1) K is obtained. The exchange parameters for the pure FeSiG are found to beJ 1=1.16(4) K,J 1=0.96(4K andJ 2=–1.24(4) K for nearest and next nearest neighbours, respectively. These values apply for a moment of 4.02(4) B per iron atom as obtained from a structure refinement of powder diffraction data. Finally we present results for FeSiG of a high resolution study of the excitations at the zone centre in an attempt to verify our earlier findings of a quantum spin wave gap for FeGeG. In contrast to the earlier measurements, we could follow the acoustical branch to much lower energies using a timeof-flight spectrometer. We found indications for a crossing of the two low lying spin wave branches, the acoustical one extrapolating to the anisotropy gap of 0.005 THz and the antiphase branch extrapolating to the quantum gap of 0.02 THz.  相似文献   

10.
The electrical and magnetoresistant properties of La0.67(Ca0.65Ba0.35)0.33MnO3/Agx (abbreviated by LCBMO/Agx) have been studied. The results show that Ag addition causes a decrease of resistivity dramatically and especially induces a large enhancement of room temperature magnetoresistance (MR). The room temperature MR ratio for x=0.27 sample in 10 kOe magnetic field is 41%, almost 20 times larger than that for x=0 sample. This enhancement is related to that the Curie temperature (Tc) of the sample is near room temperature, as well as the significant reduction of resistivity. The good fits of experimental results for x=0.27 sample to Brillouin function indicate that the MR behavior in the Ag added LCBMO is induced by the spin-dependent hopping of the electrons between the spin clusters, which is an intrinsic property of the CMR materials.  相似文献   

11.
A structural and thermodynamic study of the newly synthesized single crystal Sr5Rh4O12 is reported. Sr5Rh4O12 consists of a triangular lattice of spin chains running along the c-axis. It is antiferromagnetically ordered below 23 K with the intrachain and interchain coupling being ferromagnetic (FM) and antiferromagnetic (AFM), respectively. There is strong evidence for an Ising character in the interaction and geometrical frustration that causes incomplete long-range AFM order. The isothermal magnetization exhibits two step-like transitions leading to a ferrimagnetic state at 2.4 T and a FM state at 4.8 T, respectively. Sr5Rh4O12 is a unique frustrated spin-chain system ever found in 4d and 5d based materials without a presence of an incomplete 3d-electron shell.  相似文献   

12.
The magnetic behavior of polycrystalline yttrium orthoferrite was studied from the experimental and theoretical points of view. Magnetization measurements up to 170 kOe were carried out on a single-phase YFeO3 sample synthesized from heterobimetallic alkoxides. The complex interplay between weak-ferromagnetic and antiferromagnetic interactions, observed in the experimental M(H) curves, was successfully simulated by locally minimizing the magnetic energy of two interacting Fe sublattices. The resulting values of exchange field (HE=5590 kOe), anisotropy field (HA=0.5 kOe) and Dzyaloshinsky–Moriya antisymmetric field (HD=149 kOe) are in good agreement with previous reports on this system.  相似文献   

13.
The crystal and magnetic structure of Ho2NiGe6 was studied by powder neutron diffraction. The paramagnetic neutron diffraction data confirmed the Ce2CuGe6-type crystal structure reported earlier for this compound. Below the Néel temperature equal to 11 K the Ho magnetic moments form a uniaxial antiferromagnetic ordering. The Ho magnetic moments equal to 8.16(7)μB at 1.5 K are parallel to the b-axis. The data are compared with those published for HoNi0.46(6)Ge2.  相似文献   

14.
The effect of Cr-doping on the structural, magnetic and transport properties of perovskite manganites La0.8Ca0.2Mn1−xCrxO3 (0≤x≤0.7) has been investigated. The Curie temperature (TC) of the Cr-doped samples is almost unchanged up to 30% of Cr-doping. The Cr-doped samples, however, undergo a transition from the parent metallic state to the insulating state below TC. The dc and ac magnetization data suggest that ferromagnetic clusters induced by double exchange interaction between Cr3+ and Mn3+ ions and antiferromagnetic components driven by Cr3+/Mn4+ and Cr3+/Cr3+ interactions are present in the Cr-doped system, which is supported by comparative studies on magnetic and transport properties of LaMnO3+δ and LaMn0.75Cr0.25O3+δ.  相似文献   

15.
The role of vibrational anisotropy of Mn3+O6 octahedron in the phase separation behavior of La0.67−yPryCa0.33MnO3 (x=0, 0.15, 0.25 and 0.30) has been investigated by means of magnetization M, internal friction Q−1, Young's modulus E along with the X-ray powder diffraction measurements. For the samples with y=0 and 0.15, the Q−1 exhibits three peaks in the ferromagnetic region, which are attributed to the intrinsic inhomogeneity of ferromagnetic phase, i.e. the electronic phase separation with the coexistence of insulating and conducting phases. However, both the samples with y=0.25 and 0.30 undergo a magnetic phase separation with the coexistence of the antiferromagnetic and ferromagnetic phases, and the Q−1 peaks related to the electronic phase separation have not been observed. In addition, the Q−1 exhibits a peak in the paramagnetic region for all samples, which may result from the formation of magnetic clusters. We observed that the evolution from electronic to magnetic phase separation is close related to the rapid increase in the ratio of two kinds of Jahn-Teller distortion modes Q3 and Q2, i.e. Q3/Q2. A schematic phase diagram is given in the text, and it is suggested that the enhancement of vibrational anisotropy of Mn3+O6 octahedron plays a key role in the evolution from electronic to magnetic phase separation.  相似文献   

16.
In this work neutron diffraction studies of Tb2Rh3Si5 compound are reported. The compound crystallizes in the monoclinic crystal structure of Lu2Co3Si5-type. At 1.5 K an antiferromagnetic ordering with a propagation vector k=(1/2;1/2;1/2) was observed. The Tb magnetic moments of 9.8(2) μB form a non-collinear magnetic structure. In the vicinity of Néel temperature of 8 K a change of the magnetic ordering is evidenced. The change seems to be connected with phase transition from commensurate to incommensurate sine-wave modulation of the Tb magnetic moments.  相似文献   

17.
18.
The exploration of the magnetic and transport properties of four series of manganese perovskites, Pr0.7Ca0.34−xAxMnO3−δ (A=Sr, Ba), Pr0.7−xLaxCa0.3 MnO3−δ and Pr0.66Ca0.34−x SrxMnO3−δ has allowed four phases with colossal magnetoresistive (CMR) properties to be isolated: Pr0.7Ca0.25Sr0.025MnO3−δ and Pr0.66Ca0.26Sr0.08MnO3−δ that exhibit a variation of resistance of 2.5. 107% and 109% at μ0 H=5 T for T=88 K and 50 K respectively, Pr0.58La0.12Ca0.3 MnO3−δ that exhibits a variation of 6.106% for μ0 H=5 T at T=80 K and Pr0.7Ba0.025Ca0.275MnO3−δ for which a resistance variation of 5.109%, at T=50 K, for μ0 H=5 T is evidenced. for each compound of this series except the barium phase, one observes that the temperature Tmax, which corresponds to the resistance maximum on the R(T) curves in zero magnetic field, increases dramatically as the mean size of the interpolated cations increases, and that the CMR effect correlatively decreases dramatically. The comparison of the two series Pr0.7Ca0.3−xSrxMnO3−δ and Pr0.66Ca0.34−xSrxMnO3−δ shows also the crucial role of the hole carrier density: for a same mean ionic radius of the interpolated cation Tmax is decreased of about 50 K by introducing 0.034 hole per Mn mole.  相似文献   

19.
We have prepared a series of polycrystalline manganites with the nominal compositions, La0.67Ba0.33Mn0.88Cr0.12O3/Agx (LBMCO/Agx) (x   is the mole fraction) with x=0x=0, 0.05, 0.1, 0.15, 0.2, 0.23, 0.27, 0.3, 0.35. The X-ray diffraction patterns show that the samples with x>0.05x>0.05 are two-phase composites. The Ag addition in LBMCO improves the properties of grain surfaces/boundaries and reduces the resistivity of the composites. For x=0.30x=0.30 sample, a minimum resistivity is obtained and a maximum room temperature magnetoresistance up to −54.5% was observed at 288 K, 1 T field. The room temperature TC and the reduced resistivity are responsible for the enhancement of room temperature MR.  相似文献   

20.
Canted ferromagnets present a important class of molecular magnets. In these materials the uncompensated magnetisation, created by the DzyaloshinskyMoriya interaction, has the particular property of being compatible with the symmetry of the underlying antiferromagnetic Hamiltonian. If the ordering transition is continuous, Landau theory and simple symmetry arguments about the crystal structure can be used to determine whether such parasitic ferromagnetism is possible, and therefore to aid the systematic search for new molecular ferromagnets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号